首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

2.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

3.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

4.
In the title compound, [Cd(C8H4O4)(C10H8N2O2)(H2O)]n, (I), each CdII atom is seven‐coordinated in a distorted monocapped trigonal prismatic coordination geometry, surrounded by four carboxylate O atoms from two different benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, two O atoms from two distinct 4,4′‐bipyridine N,N′‐dioxide (bpdo) ligands and one water O atom. The CdII atom and the water O atom are on a twofold rotation axis. The bpdo and 1,4‐bdc ligands are on centers of inversion. Each crystallographically unique CdII center is bridged by the 1,4‐bdc dianions and bpdo ligands to give a three‐dimensional diamond framework containing large adamantanoid cages. Three identical such nets are interlocked with each other, thus directly leading to the formation of a threefold interpenetrated three‐dimensional diamond architecture. To the best of our knowledge, (I) is the first example of a threefold interpenetrating diamond net based on both bpdo and carboxylate ligands. There are strong linear O—H...O hydrogen bonds between the water molecules and carboxylate O atoms within different diamond nets. Each diamond net is hydrogen bonded to its two neighbors through these hydrogen bonds, which further consolidates the threefold interpenetrating diamond framework.  相似文献   

5.
The title compound, [Co(C12H6N2O4)(H2O)2]n, has been hydro­thermally synthesized and structurally characterized. It consists of polymeric chains of [Co{μ‐(2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O,O′)}(H2O)2] units, in which each CoII cation is octahedrally coordinated by two chelating pyridyl N atoms, two chelating carboxyl O atoms from different carboxylate groups of another bipyridyl ligand, and two water mol­ecules as terminal ligands. A crystallographic twofold axis parallel to the chain axis, passes through the Co atom.  相似文献   

6.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

7.
In poly[[bis(μ‐4,4′‐bi‐1H‐pyrazole‐κ2N2:N2′)bis(3‐carboxyadamantane‐1‐carboxylato‐κO1)cobalt(II)] dihydrate], {[Co(C12H15O4)2(C6H6N4)2]·2H2O}n, (I), the Co2+ cation lies on an inversion centre and the 4,4′‐bipyrazole (4,4′‐bpz) ligands are also situated across centres of inversion. In its non‐isomorphous cadmium analogue, {[Cd(C12H15O4)2(C6H6N4)2]·2H2O}n, (II), the Cd2+ cation lies on a twofold axis. In both compounds, the metal cations adopt an octahedral coordination, with four pyrazole N atoms in the equatorial plane [Co—N = 2.156 (2) and 2.162 (2) Å; Cd—N = 2.298 (2) and 2.321 (2) Å] and two axial carboxylate O atoms [Co—O = 2.1547 (18) Å and Cd—O = 2.347 (2) Å]. In both structures, interligand hydrogen bonding [N...O = 2.682 (3)–2.819 (3) Å] is essential for stabilization of the MN4O2 environment with its unusually high (for bulky adamantanecarboxylates) number of coordinated N‐donor co‐ligands. The compounds adopt two‐dimensional coordination connectivities and exist as square‐grid [M(4,4′‐bpz)2]n networks accommodating monodentate carboxylate ligands. The interlayer linkage is provided by hydrogen bonds from the carboxylic acid groups via the solvent water molecules [O...O = 2.565 (3) and 2.616 (3) Å] to the carboxylate groups in the next layer [O...O = 2.717 (3)–2.841 (3) Å], thereby extending the structures in the third dimension.  相似文献   

8.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

9.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

10.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

11.
In the crystal structure of the title complex, poly[μ‐1,4‐bis­(1,2,4‐triazol‐1‐yl)butane‐di‐μ‐1,5‐dicyanamido‐cadmium(II)], [Cd(C2N3)2(C8H12N6)]n or [Cd(dca)2(btb)]n, where dca is dicyanamide and btb is 1,4‐bis­(1,2,4‐triazol‐1‐yl)butane, each CdII atom occupies a center of symmetry and is in a six‐coordinated distorted octa­hedral environment. Four N atoms from four dca ligands fill the equatorial positions, and two N atoms from two btb ligands occupy the axial positions. The dca ligands adopt an end‐to‐end coordination mode and link the CdII atoms to form a 12‐membered Cd(dca)2Cd ring, and neighboring rings extend along the b axis to form a [Cd(dca)2]n chain. The btb ligands, acting as bridging bidentate ligands, link the CdII atoms of adjacent one‐dimensional [Cd(dca)2]n chains, forming a rhombic two‐dimensional network.  相似文献   

12.
In the structures of the CdII pseudohalide coordination polymer poly[[diaquabis[μ2‐3,3′‐bis(1,2,4‐triazol‐4‐yl)‐1,1′‐biadamantane‐κ2N1:N1′]cadmium(II)] dithiocyanate dihydrate], {[Cd(C24H32N6)2(H2O)2](NCS)2·2H2O}n, (I), and the isomorphous selenocyanate analogue, {[Cd(C24H32N6)2(H2O)2](NCSe)2·2H2O}n, (II), the CdII cations occupy inversion centres and have octahedral CdN4O2 environments, completed by four N atoms of the organic ligands [Cd—N = 2.316 (2) and 2.361 (2) Å for (I), and 2.313 (3) and 2.372 (3) Å for (II)] and two trans‐coordinated aqua ligands [Cd—O = 2.3189 (15) Å for (I) and 2.323 (2) Å for (II)]. In each compound, the ligand displays a bidentate N1:N1′‐bridging mode, connecting the metal centres at a distance of 14.66 Å into two‐dimensional nets of (4,4)‐topology, while the uncoordinated thio(seleno)cyanate anions reside inside the net cavities. Hydrogen bonding between the water molecules, anions and 1,2,4‐triazole N atoms supports the tight packing, with an interlayer distance of 6.09 Å.  相似文献   

13.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

14.
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

15.
Metal–organic frameworks (MOFs) are a new class of porous materials that have received widespread attention due to their potential applications in gas storage and/or separation, catalysis, luminescence, and so on. The title compound, poly[[(μ2‐3,3′‐dimethyl‐4,4′‐bipyridine‐κ2N:N′)bis(μ4‐4,4′‐oxydibenzoato‐κ4O:O′:O′′:O′′′)dizinc] tetrahydrate], {[Zn2(C14H8O5)2(C12H12N2)]·4H2O}n, has been prepared by the solvothermal assembly of Zn(NO3)2·6H2O, 4,4′‐oxydi(benzoic acid) and 3,3′‐dimethyl‐4,4′‐bipyridine. The two ZnII atoms adopt the same five‐coordinated distorted square‐pyramidal geometry (i.e. ZnO4N), bonding to four O atoms from four different 4,4′‐oxydibenzoate (oba) ligands and one N atom from a 3,3′‐dimethyl‐4,4′‐bipyridine (dmbpy) ligand. The supramolecular secondary building unit (SBU) is a paddle‐wheel [Zn2(COO)4] unit and these units are linked by oba ligands within the layer to form a two‐dimensional net parallel to the b axis, with the dmbpy ligands pointing alternately up and down, which is further extended by dmbpy ligands to form a three‐dimensional framework with rob topology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K and is stable in aqueous solutions in the pH range 5–9. Excitation and luminescence data observed at room temperature show that it emits a bright‐blue fluorescence.  相似文献   

16.
The title compound, [Mn(C14H8O4)(C12H12N2)]n, with a novel three‐dimensional framework, has been prepared by a hydro­thermal reaction at 433 K. Each Mn atom lies on a twofold axis in a slightly distorted octahedral geometry, coordinated by two N atoms from two benzidine ligands and four O atoms from three symmetry‐related biphenyl‐2,2′‐dicarboxylate (bpdc) ligands. The benzidine ligands lie about inversion centres and the bpdc ligands about twofold axes. Each bpdc ligand is bonded to three Mn ions to form a continuous chain of metal ions. The bpdc ligands are accommodated in a series of distorted holes resembling hexagonal prisms.  相似文献   

17.
A new coordination polymer, catena‐poly[[(dipyrido[3,2‐a:2′,3′‐c]phenazine‐κ2N,N′)nickel(II)]‐μ‐2,6‐dipicolinato‐κ4O2,N,O6:O2′], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one‐dimensional structure in which 2,6‐dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one NiII center, one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and one 2,6‐dipicolinate ligand. Each NiII center is six‐coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and two different 2,6‐dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by π–π stacking interactions and weak interactions to form a three‐dimensional supramolecular network.  相似文献   

18.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

19.
In the title neutral coordination polymer, [Cd(C6H3ClNO2)2(H2O)2]n, each CdII ion is coordinated by one N and four O atoms from three 2‐chloro­nicotinate ligands and by two aqua ligands, defining a distorted monocapped octahedral coordination geometry. Adjacent Cd atoms are linked by the pyridyl N atom and the bidentate carboxyl­ate functional group of a 2‐­chloro­nicotinate ligand, forming a one‐dimensional infinite chain along the b axis. The Cd⋯Cd distance is 8.112 (3) Å. These chains are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three‐dimensional network structure.  相似文献   

20.
Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self‐assembly of Cd(NO3)2·4H2O, 1,2‐bis(pyridin‐4‐yl)ethene (bpe) and 4‐iodobenzoic acid (4‐IBA). Each CdII atom is seven‐coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4‐IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdII centres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two‐dimensional net. Topologically, taking the CdII atoms as nodes and the μ‐aqua and μ‐bpe ligands as linkers, the two‐dimensional structure can be simplified as a (6,3) network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号