首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of our studies of trinuclear osmium cluster complexes with bridging sulfido and hydrido ligands, the new compounds Os3(μ‐H)(μ‐SR)(CO)9(PHCy2) (Cy = cyclo­hexyl) with R = phenyl, (I) (nona­carbonyl‐1κ3C,2κ3C,3κ3C‐di­cyclo­hexyl­phosphine‐3κP‐μ‐hydrido‐1:2κ2H‐μ‐phenyl­thio‐1:2κ2Striangulo‐triosmium), [Os3H(C6H5S)(C12H23P)(CO)9], and R = naphthyl, (II) [nona­carbonyl‐1κ3C,2κ2C,3κ4C‐di­cyclo­hexyl­phosphine‐2κP‐μ‐hydrido‐1:2κ2H‐μ‐(2‐naphthyl­thio)‐1:2κ2Striangulo‐triosmium], [Os3H(C10H7S)(C12H23P)(CO)9], were prepared. We report on these two phosphine‐substituted complexes, which exhibit perceptible changes of the Os—Os bond parameters due to the ligand‐substitution pattern.  相似文献   

2.
The reaction of Os3(CO)10(NCMe)2 with closo‐o‐C2B10H10 has yielded two interconvertible isomers Os3(CO)93‐4,5,9‐C2B10H8)(μ‐H)2 ( 1 a ) and Os3(CO)93‐3,4,8‐C2B10H8)(μ‐H)2 ( 1 b ) formed by the loss of the two NCMe ligands and one CO ligand from the Os3 cluster. Two BH bonds of the o‐C2B10H10 were activated in its addition to the osmium cluster. A second triosmium cluster was added to the 1 a / 1 b mixture to yield the complex Os3(CO)9(μ‐H)23‐4,5,9‐μ3‐7,11,12‐C2B10H7)Os3(CO)9(μ‐H)3 ( 2 ) that contains two triosmium triangles attached to the same carborane cage. When heated, 2 was transformed to the complex Os3(CO)9(μ‐H)(μ3‐3,4,8‐μ3‐7,11,12‐C2B10H8)Os3(CO)9(μ‐H) ( 3 ) by a novel opening of the carborane cage with loss of H2.  相似文献   

3.
The binuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,2κO‐(1,2‐dimethoxyethane‐1κ2O ,O ′)bis(μ‐phenylmethanolato‐1:2κ2O :O )(tetrahydrofuran‐2κO )dimagnesium(II), [Mg2(C7H7O)2(C15H23O)2(C4H8O)(C4H10O2)] or [(BHT)(DME)Mg(μ‐OBn)2Mg(THF)(BHT)], (I), was obtained from the complex [(BHT)Mg(μ‐OBn)(THF)]2 by substitution of one tetrahydrofuran (THF) molecule with 1,2‐dimethoxyethane (DME) in toluene (BHT is O‐2,6‐t Bu2‐4‐MeC6H4 and Bn is benzyl). The trinuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,3κO‐tetrakis(μ‐2‐methylphenolato)‐1:2κ4O :O ;2:3κ4O :O‐bis(tetrahydrofuran)‐1κO ,3κO‐trimagnesium(II), [Mg3(C7H7O)4(C15H23O)2(C4H8O)2] or [(BHT)2(μ‐O‐2‐MeC6H4)4(THF)2Mg3], (II), was formed from a mixture of Bu2Mg, [(BHT)Mg(n Bu)(THF)2] and 2‐methylphenol. An unusual tetranuclear complex, bis(μ3‐2‐aminoethanolato‐κ4O :O :O ,N )tetrakis(μ2‐2‐aminoethanolato‐κ3O :O ,N )bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO )tetramagnesium(II), [Mg4(C2H6NO)6(C15H23O)2] or Mg4(BHT)2(OCH2CH2NH2)6, (III), resulted from the reaction between (BHT)2Mg(THF)2 and 2‐aminoethanol. A polymerization test demonstrated the ability of (III) to catalyse the ring‐opening polymerization of ϵ‐caprolactone without activation by alcohol. In all three complexes (I)–(III), the BHT ligand demonstrates the terminal κO‐coordination mode. Complexes (I), (II) and (III) have binuclear rhomboid Mg2O2, trinuclear chain‐like Mg3O4 and bicubic Mg4O6 cores, respectively. A survey of the literature on known polynuclear Mgx Oy core types for ArO–Mg complexes is also presented.  相似文献   

4.
The two‐step one‐pot oxidative decarbonylation of [Fe2(S2C2H4)(CO)4(PMe3)2] ( 1 ) with [FeCp2]PF6, followed by addition of phosphane ligands, led to a series of diferrous dithiolato carbonyls 2 – 6 , containing three or four phosphane ligands. In situ measurements indicate efficient formation of 1 2+ as the initial intermediate of the oxidation of 1 , even when a deficiency of the oxidant was employed. Subsequent addition of PR3 gave rise to [Fe2(S2C2H4)(μ‐CO)(CO)3(PMe3)3]2+ ( 2 ) and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)2(PR3)2]2+ (R=Me 3 , OMe 4 ) as principal products. One terminal CO ligand in these complexes was readily substituted by MeCN, and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)3(MeCN)]2+ ( 5 ) and [Fe2(S2C2H4)(μ‐CO)(CO)(PMe3)4(MeCN)]2+ ( 6 ) were fully characterized. Relevant to the Hred state of the active site of Fe‐only hydrogenases, the unsymmetrical derivatives 5 and 6 feature a semibridging CO ligand trans to a labile coordination site.  相似文献   

5.
Reactions between diynes and [Os3(CO)11(CH3CN)] in the presence of water give rise to the formation of intriguing hydride triosmium clusters [Os3(μ‐H)(CO)93131RC2COHC≡CR}] ( 1a – 1c ) under mild conditions in high yields. When these allylic alcohol compounds 1a – 1c are dissolved in dry polar and donor solvents, an intramolecular cyclization process takes place to give [Os3(μ‐H)(CO)93131RC2CH=COCR}] ( 2a – 2c ) in quantitative yield. The utilization of [Os3(CO)11(CH3CN)] as starting material together with the addition of water can replace the inconvenient use of [Os3(μ‐H)2(CO)10]. This method of synthesis provides a facile pathway for diyne cyclizations and has a clear advantage over those described to date in the literature. Additionally, the analogous cyclized mixed‐metal complex [Os3(μ‐H)(CO)93131‐FcC2CH=COCFc}] ( 2d ) (Fc = ferrocenyl), was synthesized in order to carry out a comparative electrochemical study with the related compounds [Os3(CO)113‐FcC4Fc)] ( I ) and [Os3(CO)103‐FcC4Fc)] ( II ), which were previously reported by R. D. Adams.  相似文献   

6.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

7.
The complete sequence of reactions in the base‐promoted reduction of [{RuII(CO)3Cl2}2] to [RuI2(CO)4]2+ has been unraveled. Several μ‐OH, μ:κ2‐CO2H‐bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal‐coordinated carbonyls by hydroxides. The isolated compounds are [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐OH)(NPF‐Am)2][PF6] ( 1 ; NPF‐Am=2‐amino‐5,7‐trifluoromethyl‐1,8‐naphthyridine) and [Ru2(CO)4(μ:κ2C,O‐CO2H)(μ‐OH)(NP‐Me2)2][BF4]2 ( 2 ), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru4(CO)8(H2O)23‐OH)2(μ:κ2C,O‐CO2H)4][CF3SO3]2 ( 3 ) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a π‐donor chlorido ligand, which results in [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐Cl)(NP‐PhOMe)2][BF4] ( 4 ). The production of [Ru2(CO)4]2+ has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)–diruthenium(II) complex to a dihydrido–diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the RuI? RuI single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru2(CO)4(CH3CN)6]2+ precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by TlI salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear RuI2RuII complex [{Ru(NP‐Am)2(CO)}{Ru2(NP‐Am)2(CO)2(μ‐CO)2}(μ33C,O,O′‐CO2)][BF4]2 ( 6 ). These unprecedented diruthenium compounds are the dinuclear congeners of the water–gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.  相似文献   

8.
The title compounds, tetrakis(μ‐benzoato‐O:O′)­bis(2,6‐di­amino­pyridine)‐1κN,2κN‐dicopper(II)–aceto­nitrile (1/2), [Cu2(C7H5O2)4(C5H7N3)2]·2C2H3N, (I), and bis­(aceto­nitrile)‐1κN,2κN‐tetrakis(μ‐benzoato‐O:O′)­dicopper(II)–aceto­nitrile (1/1.5), [Cu2(C7H5O2)4(C2H3N)2]·1.5C2H3N, (II), crystallize as aceto­nitrile solvates exhibiting different stability. They have similar molecular structures with discrete dimeric units located at crystallographic inversion centres. The copper ions are bridged by four benzoate groups and neutral N‐donor ligands, viz. 2,6‐di­amino­pyridine in (I) and aceto­nitrile in (II), are coordinated at apical positions. The diverse stability is probably due to hydrogen‐bond interactions of the solvated aceto­nitrile mol­ecules with neighbouring dimers in compound (I).  相似文献   

9.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

10.
Three zinc iodide complexes based on phosphane ligands, namely diiodidobis(triphenylphosphane‐κP)zinc(II), [ZnI2(C18H15P2)2], ( 1 ), diiodidobis[tris(4‐methylphenyl)phosphane‐κP]zinc(II), [ZnI2(C21H21P2)2], ( 2 ), and [bis(diphenylphosphoryl)methane‐κ2O,O′]zinc(II) tetraiodidozinc(II), [Zn(C25H22O2P2)3][ZnI4], ( 3 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction revealed that the structures of ( 1 ) and ( 2 ) are both mononuclear four‐coordinated ZnI2 complexes containing two monodentate phosphane ligands, respectively. Surprisingly, ( 2 ) spontaneously forms an acentric structure, suggesting it might be a potential second‐order NLO material. The crystal structure of complex ( 3 ) is composed of two parts, namely a [Zn(dppmO2)3]2+ cation [dppmO2 is bis(diphenylphosphoryl)methane] and a [ZnI4]2− anion. The UV–Vis absorption spectra, thermal stabilities and photoluminescence spectra of the title complexes have also been studied. Time‐dependent density functional theory (TD–DFT) calculations reveal that the low‐energy UV absorption and the corresponding light emission both result from halide‐ligand charge‐transfer (XLCT) excited states.  相似文献   

11.
An unusual heterobimetallic bis(triphenylphosphane)(NO2)AgI–CoIII(dimethylglyoximate)(NO2) coordination compound with both bridging and terminal –NO2 (nitro) coordination modes has been isolated and characterized from the reaction of [CoCl(DMGH)2(PPh3)] (DMGH2 is dimethylglyoxime or N,N′‐dihydroxybutane‐2,3‐diimine) with excess AgNO2. In the title compound, namely bis(dimethylglyoximato‐1κ2O,O′)(μ‐nitro‐1κN:2κ2O,O′)(nitro‐1κN)bis(triphenylphosphane‐2κP)cobalt(III)silver(I), [AgCo(C4H7N2O2)2(NO2)2(C18H15P)2], one of the ambidentate –NO2 ligands, in a bridging mode, chelates the AgI atom in an isobidentate κ2O,O′‐manner and its N atom is coordinated to the CoIII atom. The other –NO2 ligand is terminally κN‐coordinated to the CoIII atom. The structure has been fully characterized by X‐ray crystallography and spectroscopic methods. Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) have been used to study the ground‐state electronic structure and elucidate the origin of the electronic transitions, respectively.  相似文献   

12.
A hydroxy phosphonite was found to be unstable during the catalyst preformation routine applied towards a rhodium olefin hydroformylation catalyst. C—P bond cleavage occurred when the phosphonite was reacted with [(acac)Rh(1,5‐COD)] (acac is acetyl acetate and 1,5‐COD is cycloocta‐1,5‐diene) at 80 °C and 20 bar of CO/H2. As a result, a nearly planar six‐membered ring structure consisting of two rhodium(I) cations and two bridging phosphorous acid diester anions was formed, namely bis[μ‐(4,8‐di‐tert‐butyl‐2,10‐dimethoxydibenzo[d,f][1,3,2]dioxaphosphepin‐6‐yl)oxy]‐1:2κ2P:O;1:2κ2O:P‐bis{[6‐([1,1′‐biphenyl]‐2‐yloxy)‐4,8‐di‐tert‐butyl‐2,10‐dimethoxydibenzo[d,f][1,3,2]dioxaphosphepine‐κP]carbonylrhodium(I)} toluene tetrasolvate, [Rh2(C22H28O5P)2(C34H37O5P)2(CO)2]·4C7H8. Further coordination of phosphite and of carbonyl groups resulted in 16‐electron rhodium centres.  相似文献   

13.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

14.
The electronically unsaturated dirhenium complex [Re2(CO)8(μ‐H)(μ‐Ph)] ( 1 ) has been found to exhibit aromatic C?H activation upon reaction with N,N‐diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ‐H)(μ‐η1‐NEt2C6H4)] ( 2 ), [Re2(CO)8(μ‐H)(μ‐η2‐1,2‐C10H7)] ( 3 ), and [D6]‐ 1 , respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C?H bond‐activation process.  相似文献   

15.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

16.
The synthesis and characterization of two dinuclear complexes, namely fac‐hexacarbonyl‐1κ3C,2κ3C‐(pyridine‐1κN)[μ‐2,2′‐sulfanediyldi(ethanethiolato)‐1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], ( 1 ), and tetraethylammonium fac‐tris(μ‐2‐methoxybenzenethiolato‐κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], ( 2 ), together with two mononuclear complexes, namely (2,2′‐bithiophene‐5‐carboxylic acid‐κ2S,S′)bromidotricarbonylrhenium(I), ( 3 ), and bromidotricarbonyl(methyl benzo[b]thiophene‐2‐carboxylate‐κ2O,S)rhenium(I), ( 4 ), are reported. Crystals of ( 1 ) and ( 2 ) were characterized by X‐ray diffraction. The crystal structure of ( 1 ) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReI metal centres, while the geometry of the second ReI metal centre is completed by a pyridine ligand. The structure of ( 2 ) is characterized by three S‐atom bridges and an Re…Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for ( 1 ) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex ( 1 ) is stabilized by six intermolecular hydrogen‐bond interactions and an O…O interaction, while ( 2 ) is stabilized by two intermolecular hydrogen‐bond interactions and two O…π interactions.  相似文献   

17.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

18.
The title dinuclear complex, (aqua‐1κO)tetrakis(μ‐2,3‐diphenylprop‐2‐enoato‐1:2κ2O:O′)bis(2,3‐diphenylprop‐2‐enoato)‐1κO;2κO‐(ethanol‐2κO)bis(1,10‐phenanthroline)‐1κ2N,N′;2κ2N,N′‐dilanthanum(III), [La2(C15H11O2)6(C12H8N2)2(C2H5OH)(H2O)], contains two similar LaIII centres with distorted [LaO6N2] bicapped triganol–prismatic coordination polyhedra formed by six phenylcinnamate (PCA or 2,3‐diphenylprop‐2‐enoate) ligands, two 1,10‐phenanthroline (phen) ligands, a coordinating ethanol molecule and a coordinating water molecule. The two metal centres are bridged by four μ‐PCA ligands, with the remaining two PCA ligands coordinated in a monodentate fashion. The noncoordinated carboxylate O atoms on the terminal PCA ligands form O—H...O hydrogen bonds with the coordinated solvent molecules. Each La centre is also coordinated by a bidentate phen ligand. The PCA ligands all adopt synsyn orientations, with the two phenyl rings presenting dihedral angles of about 70°. The compound displays photochromic behaviour both in solution and in the solid state.  相似文献   

19.
Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido‐1κN1)bis(dimethyl sulfoxide)‐2κO,3κO‐bis{μ‐2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenolato}‐1:2κ6O,O′:O,N,N′,O′;1:3κ6O,O′:O,N,N′,O′‐dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155–2269 cm−1, which clearly proves the presence of terminal bonding dca groups. A single‐crystal X‐ray study revealed that two [CuL] units coordinate to an NiII atom through the phenolate O atoms, with double phenolate bridges between CuII and NiII atoms. Two terminal dca groups complete the distorted octahedral geometry around the central NiII atom. According to differential thermal analysis–thermogravimetric analysis (DTA–TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π–π*) transitions and fluorescence quenching is observed on complexation of H2L with CuII.  相似文献   

20.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号