首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two complexes of 5‐phenyl‐3‐(pyridin‐2‐yl)‐1,2,4‐triazine (PPTA), namely (ethanol‐κO)bis(nitrato‐κO)[5‐phenyl‐3‐(pyridin‐2‐yl‐κN)‐1,2,4‐triazine‐κN2]copper(II), [Cu(NO3)2(C14H10N4)(C2H6O)] or [Cu(NO3)2(PPTA)(EtOH)] ( 1 ), and bis[μ‐5‐phenyl‐3‐(pyridin‐2‐yl)‐1,2,4‐triazine]‐κ3N1:N2,N33N2,N3:N1‐bis[(nitrato‐κO)silver(I)], [Ag2(NO3)2(C14H10N4)2] or [Ag2(NO3)2(μ‐PPTA)2] ( 2 ), were prepared and characterized by elemental analysis, FT–IR spectroscopy and single‐crystal X‐ray diffraction. The X‐ray structure analysis of 1 revealed a copper complex with square‐pyramdial geometry containing two O‐donor nitrate ligands along with an N,N′‐donor PPTA ligand and one O‐donor ethanol ligand. In the binuclear structure of 2 , formed by the bridging of two PPTA ligands, each Ag atom has an AgN3O environment and square‐planar geometry. In addition to the four dative interactions, each Ag atom interacts with two O atoms of two nitrate ligands on adjacent complexes to complete a pseudo‐octahedral geometry. Density functional theory (DFT) calculations revealed that the geometry around the Cu and Ag atoms in 1 opt and 2 opt (opt is optimized) for an isolated molecule is the same as the experimental results. In 1 , O—H…O hydrogen bonds form R12(4) motifs. In the crystal network of the complexes, in addition to the hydrogen bonds, there are π–π stacking interactions between the aromatic rings (phenyl, pyridine and triazine) of the ligands on adjacent complexes. The ability of the ligand and complexes 1 and 2 to interact with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B‐DNA) was investigated by docking studies. The results show that the studied compounds can interact with proteins better than doxorubicin (except for TrxR and Top II).  相似文献   

2.
Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole (L), namely dichlorido(dimethylformamide‐κO){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato‐κ2O,O′){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentate L ligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and an O‐bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The ZnII atom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentate L ligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence of L results from π*←π transitions and that the luminescence of the complexes results from interligand charge‐transfer transitions. The orientation of the 2‐(pyridin‐2‐yl) substituent with respect to the benzimidazole system was found to have an impact on the calculated HOMO–LUMO gap (HOMO is highest occupied molecular orbital and LUMO is lowest unoccupied molecular orbital).  相似文献   

3.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

4.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

5.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

6.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

7.
Because of its versatile coordination modes and strong coordination ability, the mercaptoacetic acid substituted 1,2,4‐triazole 2‐{[5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetic acid ( H2L ) was synthesized and characterized. Treatment of H2L with cobalt and nickel acetate afforded the dinuclear complexes {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[aqua(methanol‐κO)cobalt(II)] methanol disolvate, [Co2(C9H6N4O2S)2(CH3OH)2(H2O)2]·2CH3OH ( 1 ), and {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[diaquanickel(II)] methanol disolvate dihydrate, [Ni2(C9H6N4O2S)2(H2O)4]·2CH3OH·2H2O ( 2 ), respectively. Complex 1 crystallized in the monoclinic space group P21/c, while 2 crystallized in the tetragonal space group I41/a. Single‐crystal X‐ray diffraction studies revealed that H2L is doubly deprotonated and acts as a tetradentate bridging ligand in complexes 1 and 2 . For both of the obtained complexes, extensive hydrogen‐bond interactions contribute to the formation of their three‐dimensional supermolecular structures. Hirshfeld surface analysis was used to illustrate the intermolecular interactions. Additionally, the urease inhibitory activities of 1 , 2 and H2L were investigated against jack bean urease, where the two complexes revealed strong urease inhibition activities.  相似文献   

8.
The dipyridyl‐type building blocks 4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole (3‐bpt) and 4,4′‐bipyridine (bpy) have been used to assemble with ZnII in the presence of trithiocyanuric acid (ttcH3) to afford two coordination compounds, namely bis[4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole‐κN3]bis(trithiocyanurato‐κ2N,S)zinc(II), [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O, (1), and catena‐poly[[[bis(trithiocyanurato‐κ2N,S)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] 4,4′‐bipyridine monosolvate], {[Zn2(C3H2N3S3)4(C10H8N2)3]·C10H8N2}n, (2). Single‐crystal X‐ray analysis indicates that complex (1) is a mononuclear structure, while complex (2) presents a one‐dimensional chain coordination motif. In both complexes, the central ZnII cation adopts an octahedral geometry, coordinated by four N‐ and two S‐donor atoms. Notably, trithiocyanurate (ttcH2) adopts the same bidentate chelating coordination mode in each complex and exists in the thione tautomeric form. The 3‐bpt co‐ligand in (1) adopts a monodentate coordination mode and serves as a terminal pendant ligand, whereas the 4,4′‐bipyridine (bpy) ligand in (2) adopts a bidentate–bridging coordination mode. The different coordination characters of the different N‐donor auxiliary ligands lead to structural diversity for complexes (1) and (2). Further analysis indicates that the resultant three‐dimensional supramolecular networks for (1) and (2) arise through intermolecular N—H...S and N—H...N hydrogen bonds. Both complexes have been further characterized by FT–IR spectroscopy and elemental analyses.  相似文献   

9.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

10.
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

11.
1‐[6‐(1H‐Pyrrolo[2,3‐b]pyridin‐1‐yl)pyridin‐2‐yl]‐1H‐pyrrolo[2,3‐b]pyridin‐7‐ium tetrachloridoferrate(III), (C19H14N5)[FeCl4], (II), and [2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl‐κN7)pyridine‐κN]bis(nitrato‐κO)copper(II), [Cu(NO3)2(C19H13N5)], (III), were prepared by self‐assembly from FeCl3·6H2O or Cu(NO3)2·3H2O and 2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl)pyridine [commonly called 2,6‐bis(azaindole)pyridine, bap], C19H13N5, (I). Compound (I) crystallizes with Z′ = 2 in the P space group, with both independent molecules adopting a transtrans conformation. Compound (II) is a salt complex with weak C—H...Cl interactions giving rise to a zigzag network with π‐stacking down the a axis. Complex (III) lies across a twofold rotation axis in the C2/c space group. The CuII center in (III) has an N3O2 trigonal–bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. C—H...O interactions give rise to a ribbon motif.  相似文献   

12.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

13.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

14.
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character.  相似文献   

15.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   

16.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

17.
Phosphate esters provide a rigid and stable polymeric backbone in nucleic acids. Metal complexes with phosphate ester groups have been synthesized as structural and spectroscopic models of phosphate‐containing enzymes. Dinucleating ligands are used extensively to synthesize model complexes since they provide the support required to stabilize such complexes. The crystal structures of two dinuclear CoII complexes, namely bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C19H19N3O)2](ClO4)2, and bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C21H18N4)2](ClO4)2, with tetradentate 2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline (L 1) and N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine (L 2) ligands are reported. The complexes have similar structures, with distorted octahedral geometries around the metal centres. Both are centrosymmetric (Z ′ = 0.5), with the CoII centres doubly bridged by diphenyl phosphate ester groups. A number of aromatic–aromatic interactions are present and differ between the two complexes as the anisole group in L 1 is replaced by a quinoline group in L 2. A detailed study of these interactions is presented.  相似文献   

18.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

19.
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour.  相似文献   

20.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号