首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complementary nucleobase‐functionalized polymeric micelles, a combination of adenine‐thymine (A‐U) base pairs and a blend of hydrophilic–hydrophobic polymer pairs, can be used to construct 3D supramolecular polymer networks; these micelles exhibit excellent self‐assembly ability in aqueous solution, rapid pH‐responsiveness, high drug loading capacity, and triggerable drug release. In this study, a multi‐uracil functionalized poly(ε‐caprolactone) (U‐PCL) and adenine end‐capped difunctional oligomeric poly(ethylene glycol) (BA‐PEG) are successfully developed and show high affinity and specific recognition in solution owing to dynamically reversible A‐U‐induced formation of physical cross‐links. The U‐PCL/BA‐PEG blend system produces supramolecular micelles that can be readily adjusted to provide the desired critical micellization concentration, particle size, and stability. Importantly, in vitro release studies show that doxorubicin (DOX)‐loaded micelles exhibit excellent DOX‐encapsulated stability under physiological conditions. When the pH value of the solution is reduced from 7.4 to 5.0, DOX‐loaded micelles can be rapidly triggered to release encapsulated DOX, suggesting these polymeric micelles represent promising candidate pH‐responsive nanocarriers for controlled‐release drug delivery and pharmaceutical applications.

  相似文献   


2.

The dynamic release of drug propranolol HCl from the propranolol HCl–resin complex (PRC) loaded calcium alginate beads has been studied in the buffer media of pH 1.2 at the physiological temperature 37°C. The PRC encapsulated beads demonstrated nearly 58.04% release while naked PRC particles released 98.00% drug in 24 h in the gastric fluid. The amount of drug released was found to increase with and decrease in the amount of sodium alginate in the beads. Similarly, with the increase in the amount of entrapped PRC particles within the beads, the quantity of drug released was also observed to increase. The degree of crosslinking of beads also affected the release kinetics. Interestingly, the release from naked PRC particles followed ‘first‐order’ kinetics while PRC particles, entrapped in calcium–alginate beads, exhibited ‘diffusion controlled’ release behavior as indicated by liner nature of fractional release vs. √t plot.  相似文献   

3.
Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.  相似文献   

4.
Monomethyl poly(ethylene glycol)-poly(ε-caprolactone)-poly(trimethylene carbonate) (MPEG-P(CL-ran-TMC)) copolymer was synthesized, which could encapsulate GA by a single-step solid dispersion and form nano-sized micelles. The MPEG-P(CL-ran-TMC) based nano-formulation of GA could improve the anti-tumor effect in vivo, which may serve as a candidate for pancreatic cancer therapy.  相似文献   

5.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

6.
顾忠伟 《高分子科学》2012,30(3):387-396
An anti-tumor drug doxorubicin was encapsulated in micelles of poly(ethylene glycol)-b-poly(2,2-dihydroxyl-methyl propylene carbonate)(PEG-b-PDHPC) diblock copolymers.The morphology of both blank micelles and drug loaded micelles was characterized by TEM.The in vitro drug release profiles of micelles were investigated.The cytotoxicity of the micelles was evaluated by incubating with Hela tumor cells and 3T3 fibroblasts.The drug loaded micelles were co-cultured with HepG2 cells to evaluate the in vitro anti-tumor efficacies.The results showed that the mean sizes of both micelles with different copolymer compositions increased after being loaded with drugs.The drug release rate of PEG45-b-PDHPC34 micelles was faster than that of mPEG114-b-PDHPC26,micelles.Both of the two block copolymers were non-toxic.The confocal laser scanning microscopy and flow cytometry results showed that both the drug loaded micelles could be internalized efficiently in HepG2 cells.The PEG45-b-PDHPC34 micelles exhibited higher anti-tumor activity comparing to mPEG114-b-PDHPC26 micelles.  相似文献   

7.
Biodegradable amphiphilic ABC Y‐shaped triblock copolymer (MPBC) containing PEG, PBLA, and PCL segments was synthesized via the combination of enzymatic ring‐opening polymerization (ROP) of epsilon‐caprolactone, ROP of BLA‐N‐carboxyanhydride and click chemistry, where PEG, PBLA, and PCL are poly(ethylene glycol), poly(benzyl‐l ‐aspartate), and polycaprolactone, respectively. Propynylamine was employed as ROP initiator for the preparation of alkynyl‐terminated PBLA and methyloxy‐PEG with hydroxyl and azide groups at the chain‐end was used as enzymatic ROP initiator for synthesis of monoazido‐midfunctionalized block copolymer mPEG‐b‐PCL. The subsequent click reaction led to the formation of Y‐shaped asymmetric heteroarm terpolymer MPBC. The polymer structures were characterized by different analyses. The MPBC terpolymer self‐assembled into micelles and physically encapsulated drug doxorubicin (DOX) to form DOX‐loaded micelles, which showed good stability and slow drug release. In vitro cytotoxicity study indicated that the MPBC micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3346–3355  相似文献   

8.
The micelles formed by reduction-sensitive amphiphilic copolymer have emerged as promising drug nanocarriers due to the controlled drug release and effective anticancer activity triggered by the reducing stimulation. However, the effect of pH on the stability and guest exchange of the micelles formed by reduction-sensitive copolymer have not been systemically investigated. Herein, the micelles formed by a reduction-sensitive copolymer poly(ε-caprolactone)-b-poly[oligo(ethylene glycol) methyl ether methacrylate] (PCL–SS–POEGA) with a single disulfide group at different pH values loaded with dyes 3,3′-dioctadecyloxacarbocyanine perchlorate/1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiO/DiI) were prepared through the precipitation-dialysis method. In addition, mixed micelles formed by different contents of reduction-sensitive and reduction-insensitive copolymers encapsulated with DiO/DiI at pH 7.5 were also prepared by the similar approach. The effects of pH and the content of reduction-sensitive copolymer on guest exchange of these micelles were studied by the fluorescence resonance energy transfer method. Results show that the pH value in the environment has great influence on the guest exchange rate of reduction-sensitive micelles in the presence of 10 mM dithiothreitol (DTT) and slight effect on that in the absence of DTT. Under a reducing environment, the guest exchange rate of the micelles containing various contents of disulfide-linked copolymer increases with the increasing content of PCL–SS–POEGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1636–1644  相似文献   

9.
Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.  相似文献   

10.
In this contribution, amphiphilic star copolymers (H40‐star‐PCL‐a‐PEG) with an H40 hyperbranched polyester core and poly(ε‐caprolactone)‐a‐poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring‐opening polymerization and a copper (I)‐catalyzed alkyne‐azide cycloaddition click reaction. The acid‐cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid‐cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid‐cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  相似文献   


11.
《Electroanalysis》2006,18(11):1041-1046
The successful development and analytical performances of two biosensor configurations based on the entrapment of algal cells of Chlorella vulgaris into either a regular alginate gel or a newly synthesized pyrrole‐alginate matrix are reported. These biosensors were compared in terms of their amperometric current measurements to p‐nitrophenyl phosphate when used as substrate for the detection of an algal alkaline phosphatase activity. The high stability of the pyrrole‐alginate gel when compared to that of the alginate coating is herein demonstrated.  相似文献   

12.
《中国化学会会志》2017,64(2):231-238
Sodium alginate (SA ) was combined with poly(N ‐isopropylacrylamide) (PNIPAAm ) to prepare thermosensitive hydrogels through semi‐interpenetrating polymer network (semi‐IPN ) and fully interpenetrating polymer network (full‐IPN ). The thermosensitive, swelling, mechanical, and thermal properties of pure PNIPAAm , SA /PNIPAAm semi‐IPN , and Ca‐alginate/PNIPAAm full‐IPN hydrogels were investigated. The formation of semi‐IPN and full‐IPN significantly improved the hydrogels’ swelling capability and mechanical properties without altering their thermosensitivity. 5‐Fluorouracil (5‐Fu) was selected as a model drug to study the release behaviors of the hydrogels. It was found that in vitro controlled drug release from semi‐IPN hydrogels showed an initial release burst, followed by a slower and sustained release, before reaching equilibrium. Full‐IPN hydrogels showed slow and sustained release during the whole process. Temperature and pH were found to affect the rate of drug release. Ca‐alginate/PNIPAAm full‐IPN hydrogels have potential application as drug delivery matrices in controlled drug release.  相似文献   

13.
Biomineralized polysaccharide-coated alginate beads containing PNIPAAM were prepared. The resulting beads can be used as carriers for sustained pH/temperature-sensitive drug delivery. Characterizations using SEM, EDS, FTIR, and POM revealed that the beads were covered by the calcium-phosphate-mineralized alginate/chitosan membrane. The drug-release behavior was examined using indomethacin as a model drug, and the release profile of the developed materials was found to be responsive to pH and temperature. The release profile could be sustained under neutral conditions, indicating that the mineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate.  相似文献   

14.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

15.
In this study, a facile method to fabricate reduction‐responsive core‐crosslinked micelles via in situ thiol‐ene “click” reaction was reported. A series of biodegradable poly(ether‐ester)s with multiple pendent mercapto groups were first synthesized by melt polycondensation of diol poly(ethylene glycol), 1,4‐butanediol, and mercaptosuccinic acid using scandium trifluoromethanesulfonate [Sc(OTf)3] as the catalyst. Then paclitaxel (PTX)‐loaded core‐crosslinked (CCL) micelles were successfully prepared by in situ crosslinking hydrophobic polyester blocks in aqueous media via thiol‐ene “click” chemistry using 2,2′‐dithiodiethanol diacrylate as the crosslinker. These PTX‐loaded CCL micelles with disulfide bonds exhibited reduction‐responsive behaviors in the presence of dithiothreitol (DTT). The drug release profile of the PTX‐loaded CCL micelles revealed that only a small amount of loaded PTX was released slowly in phosphate buffer solution (PBS) without DTT, while quick release was observed in the presence of 10.0 mM DTT. Cell count kit (CCK‐8) assays revealed that the reduction‐sensitive PTX‐loaded CCL micelles showed high antitumor activity toward HeLa cells, which was significantly higher than that of reduction‐insensitive counterparts and free PTX. This kind of biodegradable and biocompatible CCL micelles could serve as a bioreducible nanocarrier for the controlled antitumor drug release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 99–107  相似文献   

16.
Lu J  Owen SC  Shoichet MS 《Macromolecules》2011,44(15):6002-6008
The stability of polymeric nanoparticles in serum is critical to their use in drug delivery where dilution after intravenous injection often results in nanoparticle disassembly and drug unloading; however, few investigate this in biologically relevant media. To gain greater insight into nanoparticle stability in blood, the stability of self-assembled polymeric micelles of poly(d,l-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-g-poly(ethylene glycol), P(LA-co-TMCC)-g-PEG, were tested in both serum and individual serum protein solutions. By encapsulating F?rster resonance energy transfer pairs and following their release by fluorescence, these micelles demonstrated excellent thermodynamic and kinetic stability in the presence of serum. Further analyses by fast protein liquid chromatography and dynamic light scattering confirmed these data. Moreover, these micelles are compatible with red blood cells, as shown by a hemolysis assay. The stability and compatibility demonstrated in blood suggest that these micelles may be stable in vivo, which is critical for intravenous drug delivery applications. This comprehensive approach to understanding micelle stability and compatibility is broadly applicable.  相似文献   

17.
The present work describes the formulation of alginate microspheres containing diltiazem hydrochloride by the emulsification-internal gelation method with the use of barium carbonate as a cross-linking agent. The effect of various factors (the concentration of alginate and barium chloride) on the drug loading efficiency and in vitro release were investigated. Fourier transform infrared microscopy (FTIR) and differential scanninig calorimetry (DSC) analysis confirmed the absence of any drug polymer interaction. X-ray diffraction (XRD) pattern showed that there is a decrease crystallinity of the drug. The in vitro drug release profile could be altered significantly by changing various processing parameters to give a controlled release of drug from microcapsules. The stability studies of drug-loaded microcapsules showed that the drug was stable at different storage conditions.  相似文献   

18.
β-Elemene is a volatile oil used for the treatment of cancer,but poor solubility,low bioavailability,and various adverse reactions limit its application.For amelio rating risks of the venous toxicity ofβ-elemene,intravenously injectable micelle ofβ-elemene was prepared using the thin-film hydration method.The results pointed out the micelles were uniformly spherical with about 20.96±0.1966 nm in average diameter and exhibited high entrapment efficiency(99.02%±0.88%).As revealed by drug release studies in vitro,β-elemene micelles had sustained drug release.Compared with freeβ-elemene,the micelles increased the drug cellular uptake and enhanced the anti-tumor effect in vitro through retarding cell cycle and inducing apoptosis.Meanwhile,the elevated se rum stability o fβ-elemene micelles implied less drug leakage and reduced toxicity.The wound healing and tube formation assay in vitro demonstrated the anti-metastasis and anti-angiogenesis effects ofβ-elemene micelles.Moreover,the pharmacokinetics study showed the AUC and T1/2 ofβ-elemene in micelle group were 1.79 and 1.62 times of that in free fi-elemene group,suggesting the circulation time ofβ-elemene in the blood had been prolonged.In addition,β-elemene micelles showed a favorable antitumor response compared with theβ-elemene solution on C26 colon cance r-bearing mice model.Local irritation study investigated in rabbits indicated that theβ-elemene micelles strikingly mitigated the irritation to the injection sites compared with freeβ-elemene.These results proved that the micelle could be a good candidate as an auspicious drug delivery system ofβ-elemene for the prospective clinical treatment of carcinoma.  相似文献   

19.
A new approach to engineer a local drug delivery system with delayed release using nanostructured surface with nanotube arrays is presented. TNT arrays electrochemically generated on a titanium surface are used as a model substrate. Polymer micelles as drug carriers encapsulated with drug are loaded at the bottom of the TNT structure and their delayed release is obtained by loading blank micelles (without drug) on the top. The delayed and time‐controlled drug release is successfully demonstrated by controlling the ratio of blank and drug loaded‐micelles. The concept is verified using four different polymer micelles (regular and inverted) loaded with water‐insoluble (indomethacin) and water‐soluble drugs (gentamicin).

  相似文献   


20.
This paper describes the preparation and characterization of a novel drug delivery system for protein, liposomes-in-alginate (LIA) of biodegradable polymers, which is conceived from a combination of the polymer and the lipid-based delivery systems. LIA were prepared by first entrapping bovine serum albumin (BSA), a model protein within multivesicular liposomes (MVLs) by double emulsification process, which are then encapsulated within alginate hydrogel microcapsule, with untrapped BSA which are added during preparation of MVLs. Factors impacting encapsulation efficiency of MVLs are investigated and release of protein from the microcapsules in vitro is studied. At the same time, characterization of MVLs, microcapsules encapsulated protein formulation and integrality analyse of BSA in microcapsules are also studied, with the aim of improving the entrapment efficiency and prolonging release time. It is found that encapsulation efficiency and size of MVLs are affected by the composition and fabrication parameters of LIA. The data also show LIA have high encapsulation efficiency (up to 95%), little chemical change in drug caused by the formulation process, narrow particle size distribution and spherical particle morphology. Drug release assays conducted in vitro indicates that these formulations provide sustained release of encapsulated drug over a period, about 2 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号