首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cellulose/silver nanoparticle composite films with in situ-generated silver nanoparticles (AgNPs) were prepared using Ocimum sanctum leaf extract as a reducing agent in the absence and presence of sunlight and were characterized by SEM, FTIR, XRD, and antibacterial tests. Sunlight hastened up the preparation of these composite films. The average size of the in situ-generated AgNPs was reduced by the sunlight. The antibacterial activity and other properties of the composites were enhanced by the sunlight. The cellulose/AgNP composite films with improved properties by sunlight can be considered for medical purpose as antibacterial dressing materials.  相似文献   

2.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

3.
Pongamia pinnata – a plant used since olden times in Ayurvedic treatment – is reported to have diverse functions including antibacterial, antidiabetic, antineurodegenerative, antiepileptic, antiulcer, etc. In this study, our objective was to prepare silver nanoparticles (AgNPs) by green synthesis mediated by methanolic seed extract of P. pinnata and to determine their antimicrobial and antioxidant potential and wound healing activity. AgNPs were characterized for particle size and shape and for antioxidant potential. Further, the AgNPs were incorporated in a gel. The wound healing activity was investigated using an excision wound healing model in Wistar rats. The AgNP‐loaded gel was applied topically to the wounded rats daily for 30 days. The wound contraction was calculated and histopathological studies of the healed tissues were conducted. Karanjin content of the extract was found to be 349 ± 2.16 mg g?1. Formation of AgNPs was confirmed using transmission and scanning electron microscopies and X‐ray diffraction. AgNPs showed good antioxidant potential and were active against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. Significant wound healing activity (p < 0.05) was shown by the AgNP gel as compared to 5% Betadine ointment. Thus, the prepared AgNPs have antimicrobial and wound healing effects that may be useful in treatment of topical infections especially in wounds.  相似文献   

4.
In this study, the bark of an important medicinal plant, Indigofera aspalathoides is utilized as a bioreductant for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The formation of nanoparticles was monitored, and the reaction parameters were optimized by UV–Vis spectroscopy. The attachment of biocomponents as stabilizer was proved employing Fourier‐transform infrared (FT‐IR) studies. Through transmission electron microscopy (TEM), the morphology was found to be predominantly spherical and a mixture of triangle and hexagon in the case of AgNPs and AuNPs, respectively. The crystallite size of AgNPs and AuNPs was affirmed through X‐ray diffraction (XRD) studies using Sherrer formula as 22.03 and 47.70 nm, respectively. DPPH method was adopted to analyse the free‐radical quenching ability, and the AgNPs, AuNPs and extract showed inhibition of 76%, 89% and 59% at a concentration of 200 μg ml?1, and the corresponding IC50 values were 86.49, 55.20 and 149.19 μg ml?1. The binding of nanoparticles to calf‐thymus DNA (CT‐DNA) was through groove and the high binding constants (8.49 × 106 M?1 and 2.34 × 107 M?1 for AgNPs and AuNPs) point out the potential of these nanoparticles as curative drugs. The MTT assay showed that AgNPs were 100% toxic, and the low IC50 value suggests that this can be used in the medicinal field as a safe drug.  相似文献   

5.
Using tamarind leaf extract as a reducing agent and various concentrated aq?AgNO3 solutions as source, the silver nanoparticles (AgNPs) were in situ generated in polyester fabrics. The nanocomposite polyester fabrics were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and antibacterial tests. The size of the generated AgNPs varied between 50 and 120?nm. The X-ray analysis indicated the generation of both AgNPs and AgO nanoparticles in the nanocomposite fabrics. The nanocomposite polyester fabrics exhibited excellent antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be considered for making antibacterial textiles.  相似文献   

6.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

7.
A facile and economic method to fabricate and immobilize silver nanoparticles on a thin Si wafer (AgNP/Si) is reported for an analytical template in ambient environment by surface‐enhanced infrared/Raman spectroscopy. The protocol involves immersion of the Si wafer in a solution containing silver nitrate and hydrofluoric acid. To screen appropriate conditions for preparing AgNP/Si for SEIRAS application, different combinations of AgNO3 and HF solutions were examined with paranitrobenzoic acid (PNBA) used as the probe molecule in transmission measurements. These SEIRA‐active substrates were also promising for SERS application, as demonstrated with high quality SERS spectra of iron (III) protoporphyrin adlayer on AgNP/Si with a red excitation line. The AgNP/Si substrates prepared under different conditions were examined by SEM for qualitative correlation of enhancements with morphologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Immobilization of Ag and Au nanoparticles (NPs) synthesized by ascorbic acid on chemically modified glass surface has been studied. 3‐[2‐(2‐Aminoethylamino)ethylamino]propyl‐trimethoxysilane (AMPTS), N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilan, and 3‐trimethoxysilyl‐1‐propanethiol (MSPT) were used as surface modifying agents. To improve immobilization efficiency, the ammonia solution has been used along with the silane reagents, which assisted to adsorb the metal NPs on glass surface. It was found that AMPTS and MSPT have considerable effect on deposition of Ag and AuNPs on glass substrate. The fabricated thin films were characterized by using UV‐Vis spectroscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy and subjected to antimicrobial resistance test. The UV–Vis spectra show a distinctive plasmon resonance absorbance peak for thin films of Au and AgNPs prepared with MSPT and AMPTS, respectively. Atomic force microscopy images indicate that formation of Au and AgNPs with spherical morphology after immobilization on the glass substrate and also the dimensions of NPs on the surface appear larger than those observed in the parent colloidal solution. Energy‐dispersive X‐ray spectroscopy measurements confirmed the presence of silver and gold on the modified glass surface, and elemental composition was measured. The Au and AgNPs thin films show antibacterial activity against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria in comparison with a blank sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5‐tris(nicotinamidomethyl)‐2,4,6‐triethylbenzene, 1,3,5‐tris(isonicotinamidomethyl)‐2,4,6‐triethylbenzene, 1,3,5‐tris(nicotinamidomethyl)‐2,4,6‐trimethylbenzene, and 1,3,5‐tris(isonicotinamidomethyl)‐2,4,6‐trimethylbenzene, which contain potential hydrogen‐bonding sites, were designed and synthesized for generating AgI coordination polymers and coordination‐polymer‐based gels. The coordination polymers thus obtained were characterized by single‐crystal X‐ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X‐ray diffraction, energy dispersive X‐ray and X‐ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4‐nitrophenolate to 4‐aminophenolate without the use of any exogenous reducing agent.  相似文献   

10.
There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Recently, researchers have tried to synthesize the chemotherapeutic drugs from metallic nanoparticles especially gold and silver nanoparticles. In the current study, silver nanoparticles using Spinacia oleracea L. leaf aqueous extract (AgNPs) are reported for the first time to exert a dietary remedial property compared to doxorubicin in an animal model of acute myeloid leukemia. The synthesized AgNPs were characterized using different techniques including UV-Vis., EDS, TEM, FT-IR, and FE-SEM. UV-Vis. indicates an absorption band at 462 nm that is related to the surface plasmon resonance of AgNPs. In EDS, metallic silver nanocrystals indicated an optical absorption peak at roughly 4keV. TEM and FE-SEM images exhibited a uniform spherical morphology and diameters of 20–40 nm for the nanoparticles. FT-IR findings suggested antioxidant compounds in the nanoparticles were the sources of reducing power, reducing silver ions to AgNPs. In vivo design, induction of acute myeloid leukemia was done by 7,12-Dimethylbenz[a]anthracene in 75 mice. Then, the animals were randomly divided into six subgroups, including control, untreated, AgNO3, S. oleracea, AgNPs, and doxorubicin. Similar to doxorubicin, AgNPs significantly (p ≤ 0.01) reduced the pro-inflammatory cytokines, and the total WBC, blast, neutrophil, monocyte, eosinophil, and basophil counts and increased the weight of the body, the anti-inflammatory cytokines and the lymphocyte, platelet, and RBC parameters as compared to the untreated mice. DPPH free radical scavenging test was done to evaluate the antioxidant potentials of AgNO3, S. oleracea, AgNPs, and doxorubicin. DPPH test revealed similar antioxidant potentials for doxorubicin and AgNPs. For the analyzing of cytotoxicity effects of AgNO3, S. oleracea, AgNPs, and doxorubicin, MTT assay was used on HUVEC, Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines. AgNPs similar to doxorubicin had low cell viability dose-dependently against Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. These results reveal that the inclusion of S. oleracea leaf aqueous extract improves the remedial effects of AgNPs, which led to a significant enhancement in the antioxidant, cytotoxicity, and anti-acute myeloid leukemia potentials of the nanoparticles. It seems that AgNPs can be applied as a chemotherapeutic supplement or drug for the treatment of acute myeloid leukemia in the clinical trial.  相似文献   

11.
In a biological process where the herbal tea (Stachys lavandulifolia) aqueous extract was applied as a capping and reducing agent, nanoparticles (NPs) of silver (Ag) were synthesized. These AgNPs were characterized using Fourier transform‐infrared spectroscopy, field emission‐scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. The synthesized AgNPs had great cell viability dose‐dependently [investigating the effect of the plant on human umbilical vein endothelial cell line] and indicated this method was non‐toxic. In this study, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was carried out to examine antioxidant properties, which revealed similar antioxidant properties for AgNPs and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial characteristics. The macro‐broth tube test was run to determine minimum inhibitory concentration. All data of antibacterial and cutaneous wound‐healing examinations were analyzed by SPSS 21 software (Duncan post hoc test). AgNPs showed higher antibacterial property than all standard antibiotics (p ≤ 0.01). Also, AgNPs prevented the growth of all bacteria at 2–8 mg/ml concentrations and destroyed them at 2–16 mg/ml concentrations (p ≤ 0.01). For the in vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control; treatment with Eucerin basal ointment; treatment with 3% tetracycline ointment; treatment with 0.2% AgNO3 ointment; treatment with 0.2% S. lavandulifolia ointment; and treatment with 0.2% AgNPs ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3‐cm section was prepared from all dermal thicknesses at day 10. Use of AgNPs ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, macrophage and lymphocyte, and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte and fibrocytes/fibroblast rate compared with other groups. Seemingly, AgNPs can be used as a medical supplement owing to their non‐cytotoxic, antioxidant, antibacterial and cutaneous wound‐healing properties.  相似文献   

12.
Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy‐dispersive X‐ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X‐ray photoelectron spectroscopy, and high‐resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at % showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.  相似文献   

13.
Functional nanostructures of self‐assembled block copolymers (BCPs) incorporated with various inorganic nanomaterials have received considerable attention on account of their many potential applications. Here we demonstrate the two‐dimensional self‐assembly of anisotropic titanium dioxide (TiO2) nanocrystals (NCs) and metal nanoparticles (NPs) directed by monolayered poly(styrene)‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) copolymer inverse micelles. The independent position‐selective assembly of TiO2 NCs and silver nanoparticles (AgNPs) preferentially in the intermicelle corona regions and the core of micelles, respectively, for instance, was accomplished by spin‐coating a mixture solution of PS‐b‐P4VP and ex situ synthesized TiO2 NCs, followed by the reduction of Ag salts coordinated in the cores of micelles into AgNPs. Hydrophobic TiO2 NCs with a diameter and length of approximately 3 nm and 20–30 nm, respectively, were preferentially sequestered in the intermicelle nonpolar PS corona regions energetically favorable with the minimum entropic packing penalty. Subsequent high‐temperature annealing at 550 °C not only effectively removed the block copolymer but also transformed the TiO2 NCs into connected nanoparticles, thus leading to a two‐dimensionally ordered TiO2 network in which AgNPs were also self‐organized. The enhanced photocatalytic activity of the AgNP‐decorated TiO2 networks by approximately 27 and 44 % over that of Ag‐free TiO2 networks and randomly deposited TiO2 nanoparticles, respectively, was confirmed by the UV degradation property of methylene blue.  相似文献   

14.
The development of antibiotic resistance in pathogenic bacterial strains has drawn attention to the quest for new natural antibacterial drugs. Therefore, in the present study, extracts of Rumex hastatus leaves were obtained in methanol and water, and R. hastatus-based silver nanoparticles (AgNPs) were synthesized. Structural and functional properties of synthesized silver nanoparticles were determined by UV–vis spectroscopy, XRD, FTIR and SEM. The synthesized AgNPs and crude extracts were tested to check their antibacterial potential against human pathogenic bacterial strains of Staphylococcus aureus, Staphylococcus haemoliticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa in well diffusion and broth dilution methods. The present investigation has revealed for the first time that the broth dilution method was found more reproducible than that of the well diffusion method even at lower concentrations of AgNPs and crude extracts. UV– Vis spectroscopic analysis of AgNPs revealed a peak at 367 nm. XRD pattern showed a face-centered cubical to the spherical structure of AgNP crystals. FTIR analysis revealed that flavonoids and terpenoids are responsible for the reduction of AgNO3 to Ag+. SEM analysis determined the spherical structure and 51 nm average diameter of nanoparticles. The antibacterial activity of R. hastatus-based (AgNPs) was found to be significantly higher than aqueous plant extract and silver nitrate alone. Bacterial growth was inhibited by R. hastatus-based AgNPs in a dose-dependent manner. To our knowledge, silver nanoparticles (AgNPs) of R. hastatus were synthesized and characterized for the first time in this study and, based on the findings of current research work R. hastatus extract-based silver nanoparticles are suggested to be used as an antibacterial drug instead of synthetic drugs for the treatment of various human diseases/infections caused by the tested bacterial strains.  相似文献   

15.
For the first time, we synthesize solid‐solution alloy nanoparticles of Ir and Cu with a size of ca. 2 nm, despite Ir and Cu being immiscible in the bulk up to their melting over the whole composition range. We performed a systematic characterization on the nature of the IrxCu1?x solid‐solution alloys using powder X‐ray diffraction, scanning transmission electron microscopy coupled with energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The results showed that the IrxCu1?x alloys had a face‐centered‐cubic structure; charge transfer from Cu to Ir occurred in the alloy nanoparticles, as the core‐level Ir 4f peaks shifted to lower energy region with the increase in Cu content. Furthermore, we observed that the alloying of Ir with Cu enhanced both the electrocatalytic oxygen evolution and oxygen reduction reactions. The enhanced activities could be attributed to the electronic interaction between Ir and Cu arising from the alloying effect at atomic‐level.  相似文献   

16.
In the current work, we followed a green chemistry route to prepare and characterize the silver nanoparticles (AgNPs) using Syzygium aromaticum (clove) extract at room temperature. Suitably, the clove extract acted as a reducing agent as well as a capping agent, and these reactions occurred rapidly. The formation of the AgNPs was confirmed by the observation of the distinct absorption peak at a wavelength of 418 nm using ultraviolet–visible (UV–Vis) spectroscopy, and a morphological study confirmed the uniform distribution of the optimally spherical nanoparticles. Fourier transform infrared spectroscopy (FTIR) results indicated the methoxy and allyl functional groups of eugenol of the clove extract to be responsible for the bioreduction of silver ions and for the stabilization of the resulting nanoparticles (flavonoids). We also found the AgNPs to be effective catalysts of the degradation of three pollutant organic dyes viz., 4‐nitrophenol, methylene blue and rhodamine B, in the presence of excess NaBH4. The antibacterial and antifungal activities of the bio‐synthesized AgNPs were also explored. Overall, the results suggested the potential use of clove extract as a resource for the synthesis of AgNPs having a broad range of possible commercial and biomedical applications.  相似文献   

17.

In recent years, progress of biological synthesis of nanoparticles is inevitable due to its important applications. In this research, a new and simple method for the synthesis of AgNPs from plant extracts is presented. The extract from shoots of the plant Tribulus terrestris L. was mixed with AgNO3 with the aim of biologically synthesizing AgNPs. The biomolecules existing in the extract were accountable for the fast reduction of silver ions (Ag+) to AgNPs. Characterization of biosynthesized AgNPs was performed by UV–Vis, TEM, DLS, and XRD. The AgNPs exhibit a strong peak at 434 nm, and sphere-shaped AgNPs were found to be ~?25 nm. The biosynthesized silver nanoparticles have demonstrated high antibacterial effect against pathogenic bacteria (i.e., Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa). In addition, the in vitro cytotoxicity effect of biosynthesized silver nanoparticles was also investigated and was detected to be up to 15.62 μg/mL in the treated Neuro2A cells. The plant-mediated biosynthesis of AgNPs has comparatively rapid, eco-friendly, inexpensive and wide-ranging application in modern medicine and the food industry.

  相似文献   

18.
Well‐dispersed silver nanoparticles were successfully fabricated within poly[(N‐isopropylacrylamide)‐co‐(acrylic acid)] [P(NIPAM‐co‐AA)] microgel particles which were synthesized with different cross‐linking densities. Their structures were studied by field‐emission scanning electron microscopy, transmission electron microscopy, UV‐vis spectroscopy, X‐ray diffraction and FT‐IR spectroscopy. The interactions between the microgel particles and the incorporated silver nanoparticles were investigated by X‐ray photoelectron spectroscopy. The results revealed that there was charge transfer from the carbonyl groups of the microgel particles to the silver nanoparticles. Moreover, as the diameter of the AgNPs decreases, the charge‐transfer efficiency increases accordingly. The P(NIPAM‐co‐AA)/AgNPs hybrid microgel particles were thermoresponsive and their behavior completely reversible with several heating/cooling cycles.

  相似文献   


19.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《中国化学会会志》2017,64(10):1164-1171
A green biogenic, nontoxic, high‐yielding synthetic method is introduced for the synthesis of silver nanoparticles (AgNPs) using ionic‐liquid‐based, microwave‐assisted extraction (ILMAE) from Polygonum minus . The aqueous ionic liquid (1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl)‐based plant extract was used as reducing agent to reduce silver ions to AgNPs. The synthesis of AgNPs was confirmed by UV–visible spectrophotometry. Fourier transforms infrared (FTIR) spectra showed that the plant bioactive compounds capped the AgNPs. The particle size and morphology of Ag NPs were characterized by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM), respectively. Elemental analysis was carried out by energy‐dispersive X‐ray (EDX) spectroscopy. Photodegradation studies showed that the AgNPs degraded 98% of methylene blue in 12 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号