首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient method for photocatalytic perfluoroalkylation of vinyl‐substituted all‐carbon quaternary centers involving 1,2‐aryl migration has been developed. The rearrangement reactions use fac‐Ir(ppy)3, visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all‐carbon quaternary center with the concomitant generation of a C‐radical bearing two electron‐withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.  相似文献   

2.
This study presents thioether construction involving alkyl/aryl thiosulfates and diazonium salt catalyzed by visible‐light‐excited [Ru(bpy)3Cl2] at room temperature in 44–86 % yield. Electron paramagnetic resonance studies found that thiosulfate radical formation was promoted by K2CO3. Conversely, radicals generated from BnSH or BnSSBn (Bn=benzyl) were clearly suppressed, demonstrating the special property of thiosulfate in this system. Transient absorption spectra confirmed the electron‐transfer process between [Ru(bpy)3Cl2] and 4‐MeO‐phenyl diazonium salt, which occurred with a rate constant of 1.69×109 M ?1 s?1. The corresponding radical trapping product was confirmed by X‐ray diffraction. The full reaction mechanism was determined together with emission quenching data. Furthermore, this system efficiently avoided the over‐oxidation of sulfide caused by H2O in the photoexcited system containing Ru2+. Both aryl and heteroaryl diazonium salts with various electronic properties were investigated for synthetic compatibility. Both alkyl‐ and aryl‐substituted thiosulfates could be used as substrates. Notably, pharmaceutical derivatives afforded late‐stage sulfuration smoothly under mild conditions.  相似文献   

3.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

4.
Owing to numerous new applications, the interest in “task‐specific” ionic liquids increased significantly over the last decade. But, unfortunately, the imidazolium‐based ionic liquids (by far the most frequently used cations) have serious limitations when it comes to modifications of their properties. The new generation of ionic liquids, called tunable aryl–alkyl ionic liquids (TAAILs), replaces one of the two alkyl chains on the imidazolium ring with an aryl ring which allows a large degree of functionalization. Inductive, mesomeric, and steric effects as well as potentially also π π and π π+ interactions provide a wide range of possibilities to tune this new class of ILs. We investigated the influence of electron‐withdrawing and ‐donating substituents at the para‐position of the aryl ring (NO2, Cl, Br, EtO(CO), H, Me, OEt, OMe) by studying the changes in the melting points of the corresponding bromide and bis(trifluoromethanesulfonyl)imide, (N(Tf)2), salts. In addition, we calculated (B3LYP/6‐311++G(d,p)) the different charge distributions of substituted 1‐aryl‐3‐propyl‐imidazolium cations to understand the experimentally observed effects. The results indicated that the presence of electron‐donating and ‐withdrawing groups leads to strong polarization effects in the cations.  相似文献   

5.
Collision induced dissociation (CID) has been extensively used for structure elucidation. CID in the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) modes has been found to generate mostly even‐electron fragment ions while it has been occasionally reported to form odd‐electron free radical ions. However, the structural requirements and the fragmentation mechanisms for free‐radical CIDs have not been well characterized in the literature. For this purpose, we studied a series of aromatic and non‐aromatic compounds such as sulfonamides, N‐aryl amides, tert‐butyl‐substituted aromatic compounds, aryl alkyl ethers, and O‐alkyl aryl oximes using the LTQ? and LTQ Orbitrap? linear ion trap mass spectrometers. The accurate measurement of the fragment ion masses established the unambiguous assignment of the fragment structures resulting from the test compounds. Our results showed that free radical fragmentation is structure dependent and is to a large extent correlated with the neighboring groups in the structures that stabilize the newly formed free radical ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

7.
3‐Alkyl/aryl‐3‐hydroxyquinoline‐2,4‐diones were reduced with NaBH4 to give cis‐3‐alkyl/aryl‐3,4‐dihydro‐3,4‐dihydroxyquinolin‐2(1H)‐ones. These compounds were subjected to pinacol rearrangement by treatment with concentrated H2SO4, resulting in 4‐alkyl/aryl‐3‐hydroxyquinolin‐2(1H)‐ones. When a benzyl (Bn) group was present in position 3 of the starting compound, its elimination occurred during the rearrangement, and the corresponding 3‐hydroxyquinolin‐2(1H)‐one was formed. The reaction mechanisms are discussed for all transformations. All compounds were characterized by IR, 1H‐ and 13C‐NMR spectroscopy, as well as mass spectrometry.  相似文献   

8.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

9.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C H/P H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

10.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C? H/P? H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

11.
The intermolecular radical functionalization of arenes with aryl and alkyl H‐phosphinate esters, as well as diphenylphosphine oxide and H‐phosphonate diesters, is described. The novel catalytic MnII/excess MnIV system is a convenient and inexpensive solution to directly convert Csp2?H into C?P bonds. The reaction can be employed to functionalize P‐stereogenic H‐phosphinates since it is stereospecific. With monosubstituted aromatics, the selectivity for para‐substitution increases in the order (RO)2P(O)H<R1P(O)(OR)H<Ph2P(O)H, a trend that may be explained by steric effects.  相似文献   

12.
An extension of the well‐known ‘free‐radical‐clock’ methodology is described that allows one to determine the rate constants of carbon‐centered radicals with a variety of thiols by using the tris(trimethylsilyl)silane/thiol couple as a reducing system. A total of 20 rate constants for the hydrogen abstraction from a variety of alkyl‐, silyl‐, and aryl‐substituted thiols by the primary‐alkyl radical 2 in toluene at 80° were determined with the aid of the 5‐exo‐trig cyclization as a timing device. Further, seven rate constants for the hydrogen abstraction from a variety of alkyl‐ and silyl‐substituted thiols by the acyl radical 9 in benzene at 80° were measured using the decarbonylation process as a timing device. The rate constants varied over two orders of magnitude from 106 to 108 M ?1 s?1. Substituent effects were rationalized. The radical‐trapping abilities of these reducing systems and those of other common hydrogen donors were compared.  相似文献   

13.
Reaction of superoxide anion radical (O2−·) with o‐nitrobenzenesulfonyl chloride yields a o‐nitrobenzenesulfonyl peroxy radical with strong oxidizing ability, which is capable of oxidizing aryl methylene moieties to aryl ketones and relatively electron‐rich alkenes regioselectively to epoxides. The oxidizing species is tentatively attributed to the o‐nitrobenzenesulfonyl peroxy radical of structure 1 . Tetrabutylammonium peroxydisulfate ((TBA)2S2O8, 2 ) was prepared by the reaction of tetrabutylammonium hydrogen sulfate with potassium peroxydisulfate. The epoxidation of enals and enones, such as α,β‐unsaturated aldehydes or ketones, was efficiently achieved with 2 in the presence of hydrogen peroxide and base in acetonitrile or in methanol at 25°C. A base‐sensitive substrate, such as cinnamaldehyde, could be successfully epoxidized under mild reaction conditions and in short reaction time. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:431–436, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10078  相似文献   

14.
This paper describes an efficient approach for the synthesis of a new series of 6‐[3‐alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl]nicotinic acids (where alkyl = CH3; aryl = Ph, 4‐OCH3Ph, 4,4′‐BiPh; and heteroaryl = 2‐Furyl) from the hydrolysis reaction of alkyl(aryl/heteroaryl)substituted 2‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐pyrazol‐1‐yl)‐5‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐1‐carbonylpyrazol‐1‐yl)pyridines, under basic conditions and at 70–95% yields. In a subsequent step, the esterification reaction of pyrazolyl‐nicotinic acids done in thionyl chloride and methanol led to the isolation of a series of methyl 6‐[alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl] nicotinates as stable hydrochloride salts at 64–84% yields, which could be easily converted to hydrazides to give new oxadiazolyl‐pyrazolyl‐pyridine tricyclic scaffolds at good yields from a [4 + 1] cyclocondensation reaction with 1,1,1‐triethoxyethane and 1‐(triethoxymethyl)benzene as the reagent/solvent.  相似文献   

15.
A general and efficient method for the synthesis of cyclic sulfinates and sulfinamides based on intramolecular homolytic substitution (SHi) at the sulfur atom by aryl or alkyl radicals is described. Both alkyl and benzofused compounds can be accessed directly from easily prepared acyclic precursors. Enantiomerically enriched sulfur‐based heterocycles were formed through an SHi process with inversion of configuration at the sulfur atom. Cyclization of prochiral radicals proceeded with varying stereochemical outcomes, depending on the size of the incoming radical. 2‐Pyridyl and 2‐quinolyl radicals led to biaryl compounds, which result from attack onto the ortho position of the arylsulfinate rather than a thiophilic substitution.  相似文献   

16.
Absolute rate constants are reported for the addition of the 1‐[(tert‐butoxy)carbonyl]ethyl (= 2‐(1,1‐dimethylethoxy)‐1‐methyl‐2‐oxoethyl) radical .CHMeCO2(t‐Bu) to several cyclic and monosubstituted alkenes in MeCN as obtained by time‐resolved electron paramagnetic resonance (EPR). The activation energies for the addition of this alkyl radical are mainly governed by the addition enthalpy but are also substantially lowered by the ambiphilic effect and by relief of cyclic strain.  相似文献   

17.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

18.
As the novel magic number clusters of nucleobases, the thymine quintets induced by ammonium ion (NH4+), and particularly by its derivatives such as protonated alkyl amines and protonated aryl amines, have been studied by electrospray ionization mass spectrometry (ESI‐MS) and density functional theory (DFT) calculations. The DFT‐optimized geometry of NH4+ induced thymine quintet ([T5 + NH4]+) reveals some new features including three additional hydrogen bonds between NH4+ and its surrounding thymine molecules when compared with that of the alkali metal ions induced thymine quintets. In addition, the fourth hydrogen atom of NH4+ is sticking out the assembly, and, thus, it might be replaced by an organic group R to form the protonated primary amine induced thymine quintet ([T5 + R ? NH3]+), a hypothesis that has been confirmed by both DFT calculations and ESI‐MS experiments. Furthermore, the relative abilities of the different protonated primary amines for inducing the thymine quintets are investigated by ESI‐MS competition experiments, and the results have shown a clear trend of stronger ability as the alkyl chain gets longer or as the aryl ring gets larger for the alkyl amines or the aryl amines. Two basic influence factors are consequently identified: one is the ability of the alkyl amine to accept proton, another is the π–π stacking interaction between the aryl ring and the π‐surface of the thymine molecule(s), whose explanations are strongly supported by multiple types of thermochemical data, various control experiments and DFT calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A series of stable organosuperbases, N‐alkyl‐ and N‐aryl‐1,3‐dialkyl‐4,5‐dimethylimidazol‐2‐ylidene amines, were efficiently synthesized from N,N′‐dialkylthioureas and 3‐hydroxy‐2‐butanone and their basicities were measured in acetonitrile. The derivatives with tert‐alkyl groups on the imino nitrogen were found to be more basic than the tBu P1 (pyrr) phosphazene base in acetonitrile. The origin of the high basicity of these compounds is discussed. In acetonitrile and in the gas phase, the basicity of the alkylimino derivatives depends on the size of the substituent at the imino group, which influences the degree of aromatization of the imidazole ring, as measured by 13C NMR chemical shifts or by the calculated ΔNICS(1) aromaticity parameters, as well as on solvation effects. If a wider range of imino‐substituents, including electron‐acceptor substituents, is treated in the analysis then the influence of aromatization is less predominant and the gas‐phase basicity becomes more dependent on the field‐inductive effect, polarizability, and resonance effects of the substituent.  相似文献   

20.
Diastereoisomeric isopropyl‐, 2‐ethoxyethyl‐, 2,2‐dichloroethyl‐ and 2,2,2‐trichloroethyl uridine 3′‐thiomonophosphates, 1a – 1d , respectively, have been synthesized, and their hydrolyses in aqueous alkali at 25° have been followed by HPLC. According to the time‐dependent product distributions obtained, the alkyl phosphorothioates 1a – 1d undergo cleavage to uridine 2′‐ and 3′‐thiophosphates, 7a and 7b , respectively, via a uridine 2′,3′‐cyclic thiophosphate ( 6 ). The rate of the hydroxide ion‐catalyzed cyclization of both (RP)‐ and (SP)‐diastereoisomer is highly dependent on the polar nature of the leaving group, the βlg values being ?1.23±0.03 and ?1.24±0.03, respectively. Brønsted dependence of the second‐order rate constants (kOH [dm3 mol?1 s?1]) on the pKa values of the leaving alcohols shows a convex breakpoint on going from alkyl esters 1a – 1d to aryl esters studied earlier. This may be considered as a strong evidence for a stepwise mechanism, where the formation and breakdown of the phosphorane intermediate is the rate‐limiting step with aryl and alkyl esters, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号