首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new initiators, namely, 4‐(4‐(2‐(4‐(allyloxy) phenyl)‐5‐hydroxypentane 2‐yl) phenoxy)benzaldehyde and 4‐(4‐(allyloxy) phenyl)‐4‐(4‐(4‐formylphenoxy) phenyl) pentyl 2‐bromo‐2‐methyl propanoate containing “clickable” hetero‐functionalities namely aldehyde and allyloxy were synthesized starting from commercially available 4,4′‐bis(4‐hydroxyphenyl) pentanoic acid. These initiators were utilized, respectively, for ring opening polymerization of ε‐caprolactone and atom transfer radical polymerization of methyl methacrylate. Well‐defined α‐aldehyde, α′‐allyloxy heterobifunctionalized poly(ε‐caprolactones) (Mn,GPC: 5900–29,000, PDI: 1.26–1.43) and poly(methyl methacrylate)s (Mn,GPC: 5300–28800, PDI: 1.19–1.25) were synthesized. The kinetic study of methyl methacrylate polymerization demonstrated controlled polymerization behavior. The presence of aldehyde and allyloxy functionality on polymers was confirmed by 1H NMR spectroscopy. Aldehyde‐aminooxy and thiol‐ene metal‐free double click strategy was used to demonstrate reactivity of functional groups on polymers. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Fatty acid‐derived cyclooctenes, including n‐hexanoic acid ( M1 ), n‐octanoic acid ( M2 ), lauric acid ( M3 ), and palmitic acid ( M4 ), were prepared as monomers and polymerized by ring‐opening metathesis polymerization (ROMP) using Grubbs second‐generation catalyst ( G2 ). In all the cases, the regio‐irregular unsaturated polymers with pendent linear branches were obtained, which could be saturated by chemical hydrogenation with TSH/TPA in high conversion, yielding ethylene/vinyl ester copolymers with pendent linear branches on precisely every eighth backbone carbon. Both unsaturated and saturated polymers were amorphous, and their structures were characterized by FTIR, 1H and 13C NMR spectra, and elemental analysis. Differential scanning calorimetry (DSC) and thermo‐gravimetric analysis (TGA) were used to study their thermal properties. The chain length of branches greatly affected the thermal properties of polymers. After hydrogenation, the thermal degradation stability of polymers was relatively improved. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2211–2220  相似文献   

3.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Two synthesis routes for the preparation of novel base‐modified polysulfones (PSUs; Udel®) were investigated: (1) the addition of the basic aromatic ketones 2,2′‐dipyridylketone and 4,4′‐bis‐(diethylamino)benzophenone and the basic aromatic aldehydes N,N‐dimethylamino‐benzaldehyde, pyridine‐2‐aldehyde, pyridine‐3‐aldehyde, and pyridine‐4‐aldehyde to lithiated PSU and (2) the reaction of lithiated PSU with basic aromatic carboxylic acid esters such as 4‐N,N‐dimethylaminobenzoic acid ethylester, pyridine‐2‐carboxylic acid ethylester, pyridine‐3‐carboxylic acid ethylester, and pyridine‐4‐carboxylic acid ethylester. Both synthesis routes lead to a high degree of conversion, without the occurrence of crosslinking. This is remarkable, especially for the reaction of lithiated PSU with the ester compounds, because the ? (C?O)? Ar groups formed by the reaction of the ester with PSU–Li are not further converted with the remaining PSU–Li sites to (crosslinked) PSU? C(? OLi)? Ar? PSU alcoholates, as normally observed when esters are reacted with Li‐organic compounds. Starting with dilithiated PSU, we obtained degrees of substitution of 0.8–2 groups per PSU repeating unit. The structures and compositions of the modified PSU polymers were confirmed with NMR spectroscopy and elemental analysis. The modified polymers were also characterized via thermogravimetric analysis (thermal stability). Interestingly, the product of the reaction of lithiated PSU with 4,4′‐bis‐(diethylamino)benzophenone could be oxidized to a deep blue polymeric dye that showed proton self‐conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2874–2888, 2001  相似文献   

5.
In this work, a postpolymerization surface modification approach is reported that provides pendent thiol functionality along the polymer brush backbone using the photolabile protection chemistry of both o‐nitrobenzyl and p‐methoxyphenacyl thioethers. Poly(2‐hydroxyethyl methacrylate) (pHEMA) brushes were synthesized via surface‐initiated atom transfer radical polymerization, after which the pHEMA hydroxyl groups were esterified with 3‐(2‐nitrobenzylthio)propanoic acid or 3‐(2‐(4‐methoxyphenyl)‐2‐oxoethylthio)propanoic acid to provide the photolabile protected pendent thiols. Addressing the protecting groups with light not only affords spatial control of reactive thiol functionality but enables a plethora of thiol‐mediated transformations with isocyanates and maleimides providing a modular route to create functional polymer surfaces. This concept was extended to block copolymer brush architectures enabling the modification of the chemical functionality of both the inner and outer blocks of the block copolymer surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
In this article, we demonstrate the Passerini three‐component reaction as a simple, effective method for the synthesis of polymers with double functional end groups, which are key precursors for the preparation of ABC miktoarm terpolymers. Thus, via the one‐step Passerini reaction of monomethoxy poly(ethylene glycol)–propionaldehyde (PEG‐CHO) with 2‐bromo‐2‐methylpropionic acid and propargyl isocyanoacetamide, the PEG chain end was simultaneously functionalized with one atom transfer radical polymerization (ATRP) initiating site and one alkynyl group. The resulting PEG(‐alkynyl)‐Br was then used for the synthesis of three types of miktoarm ABC terpolymers via two approaches. First, we conducted ATRP of N‐isopropylacrylamide (NIPAM), then click reaction with azido‐terminated polystyrene (PS‐N3) or poly(tert‐butyl acrylate) (PtBA‐N3) and obtained two ABC miktoarm terpolymers PEG(‐b‐PNIPAM)‐b‐PS and PEG(‐b‐PNIPAM)‐b‐PtBA. Alternatively, we conducted single electron transfer living radical polymerization of tBA and click reaction with PS‐N3 simultaneously to give PEG(‐b‐PtBA)‐b‐PS. All the polymer precursors and miktoarm terpolymers have been characterized by 1H NMR, Fourier transform infrared, gel permeation chromatography, demonstrating that both approaches provided well‐defined ABC miktoarm terpolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Isocyanide multicomponent reactions assemble more than two reaction components by exploiting the reactivity of the isocyanide carbon atom toward addition of electrophiles and nucleophiles. Reactions such as the Passerini three‐component and Ugi four‐component coupling reactions have a long and successful history in organic synthesis, which has only recently been explored in polymer chemistry. In a short time, this class of multicomponent reactions has been established as a viable method for the synthesis of linear polymers as well as more complex architectures such as miktoarm star polymers and dendrimers. This highlight discusses the recent accomplishments made with regard to innovative syntheses of polymers and dendrimers via the Passerini and Ugi reactions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3985–3991  相似文献   

8.
We report a new design of photolabile acetal‐containing amphiphilic block copolymers. Acetals as protecting groups for carbonyls or diols can be hydrolyzed under acidic condition but very stable with respect to hydrolysis at pH > 7. When combining light‐capturing chromophores with acetals, the hydrolysis of acetals can be activated by light to design dual responsive acetal‐containing polymers. Using acetalization reaction of 2,3‐dihydroxypropyl methacrylate with benzaldehyde derivatives, two new acetal‐containing photolyzable monomers have been designed. Comparable to commonly used photolabile monomers containing nitrobenzyl esters, the two acetal‐containing monomers are easy to polymerize using atom transfer radical polymerization with excellent molecular weight and dispersity control. We studied the cleavage kinetics and mechanism of acetal groups in both monomers and polyethylene oxide (PEO)‐containing amphiphilic block copolymers using 1H NMR and UV–vis spectroscopy. o‐Nitrobenzaldehyde acetal showed a Norrish Type II rearrangement to form benzoic ester; while, 2,5‐dimethoxy benzaldehyde acetal was photolabile to completely release 2,3‐dihydroxypropyl methacrylate. The photocleavage of acetals is a zero‐order reaction in regardless of molecular states of acetals; while, the acid‐cleavage of acetals proves to be a first‐order kinetics and the cleavage becomes much slower for polymers. The self‐assembly of acetal‐containing amphiphilic block copolymers and the acid‐/light‐controlled dissociation of their vesicles have been investigated. We demonstrate that those acetal‐containing polymers are potentially useful as smart drug delivery systems where the release kinetics of payloads is tunable using light and pH as triggers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1815–1824  相似文献   

9.
Novel polyphenylacetylene and polystyrene derivatives carrying L ‐proline moieties at the side chains were synthesized by the rhodium‐catalyzed and radical polymerizations of the corresponding monomers. The polyphenylacetylene derivatives showed Cotton effects at the absorption region of the main chain, indicating that the polymers adopt helical conformations with predominantly one‐handed screw sense. The polymers catalyzed the asymmetric aldol reactions of acetone with aromatic aldehydes, and cyclohexanone with p‐nitrobenzaldehyde. The enantioselectivities largely depended on the reaction conditions. In the asymmetric aldol reaction of acetone with aromatic aldehydes, the R‐enantiomeric products were predominantly obtained except the cases with the polymer catalyst in CHCl3. The ee of the products became higher as the reaction temperature was decreased. The polymeric catalysts were recoverable from the reaction mixture by filtration, and the recovered ones catalyzed the asymmetric aldol reaction of acetone with p‐nitrobenzaldehyde without decreasing the product yield and ee. The ee was improved using the copolymers of L ‐proline‐based and nonchiral monomers as catalysts. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

11.
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295  相似文献   

12.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

13.
It is challenging to realize the near‐infrared (NIR) emission with large brightness and sharp spectra from the conjugated polymers. In this study, we demonstrate the strategy for receiving strong and pure NIR emission from polymeric materials using organoboron complexes and the modification after polymerization. A series of NIR emissive conjugated polymers with boron di(iso)indomethenes (BODINs) and fluorene or bithiophene were synthesized by Suzuki–Miyaura coupling reaction. The obtained polymers exhibited high emissions in the range from deep‐red to NIR region (quantum yields: ?PL = 0.40–0.79, full width at half maximum height: Δλ1/2 = 660–940 cm?1, emission maxima: λPL = 686–714 nm). Next, the demethylation of the BODIN‐based polymer with o‐methoxyphenyl groups was carried out. The transformation of the polymer structure quantitatively proceeded via efficient intramolecular crosslinking through the intermediary of the boron atom. Finally, the resulting polymer showed both drastically larger red‐shifted and sharper photoluminescence spectrum than that of the parent polymer with deep‐red emission (?PL = 0.37, Δλ1/2 = 460 cm?1, λPL = 758 nm). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Near‐infrared (NIR) emissive conjugated polymers were prepared by palladium‐catalyzed Sonogashira polymerization of diiodobenzene‐functionalized aza‐borondipyrromethene (Aza‐BODIPY) monomers, which were substituted at 3 and 5 or 1 and 7 positions on the Aza‐BODIPY core, with 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene or 3,3′‐didodecyl‐2,2′‐diethynyl‐5,5′‐bithiophene. The structures of the polymers were confirmed by 1H NMR, 13C NMR, 11B NMR, Fourier transform infrared (FT‐IR) spectroscopies, and size exclusion chromatography (SEC). The optical properties were then characterized by UV–vis absorption and photoluminescence (PL) spectroscopies, and theoretical calculation using density‐functional theory (DFT) method. The polymers were fusible and soluble in common organic solvents including tetrahydrofuran (THF), o‐xylene, toluene, CHCl3, and CH2Cl2, etc. The UV–vis absorption and PL spectra of the polymers shifted to long wavelength region in comparison with simple Aza‐BODIPY as the counterpart because of extended π‐conjugation of the polymers. The polymers efficiently emitted NIR light with narrow emission bands at 713~777 nm on excitation at each absorption maximum. Especially, the polymer attached 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene to 3,5‐position on the core revealed intense quantum yields (?F = 24%) in this NIR region (753 nm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
The crystal structure and crystallization behavior of a series of poly(ester amide)s derived from L ‐tartaric acid, 1,6‐hexanediamine, and 6‐amino‐1‐hexanol were examined. The study included aregic polymers containing 5, 10, and 20% of ester groups in addition to the syndioregic polymer containing equal amounts of amide and ester groups. X‐ray diffraction data revealed that all the aregic poly(ester amide)s adopt the same crystal structure as the parent polyamide made of L ‐tartaric acid, and 1,6‐hexanediamine. In this structure, chains are slightly compressed and arranged as in the α‐form of nylon 66. Solid‐state nuclear magnetic resonance (NMR) revealed that ester groups are excluded from the crystal phase except for the case of the syndioregic polymer. Isothermal crystallization kinetics was analyzed according to the Avrami theory. Crystallization rates were found to decrease regularly with increasing contents in ester groups and with increasing crystallization temperature. Avrami exponent values close to 2 were found whereas spherulitic morphologies were observed by optical microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 116–125, 2007  相似文献   

16.
In attempt to improve the properties of polyanhydrides based on aliphatic anhydrides, we synthesized novel polyanhydrides containing amide groups in the main chains. In this work, N,N′‐bis(L ‐alanine)‐sebacoylamide (BSAM) was prepared from natural amino acid and sebacic acid (SA) and characterized by IR and 1H NMR. In addition, polymers of PBSAM, P[1,6‐bis(P‐carboxyphenoxy) hexane (CPH)‐BSAM], and P(CPH‐SA), blends of P(CPH‐SA)/polylactide (PLA), P(CPH‐BSAM)/PLA were also prepared and characterized by IR, gel permeation chromatography, and differential scanning calorimetry. The hydrolytic degradation of polyanhydrides and their blends with PLA (number‐average molecular weight = 2.90 × 105) was evaluated in 0.1 M phosphate buffer pH 7.4 at 37 °C. The results indicate that the existence of amide, aromatic, and ester bonds in the main chain of polymers slows down the degradation rate, and the tendency becomes clearer with the increasing amount of them, and the copolymers and their blends with PLA possess excellent physical and mechanical properties. These can make them more widely used in drug delivery and nerve regeneration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4311–4317, 2004  相似文献   

17.
DFT-B3LYP calculations were carried out to study the enantioselectivity of the (S)-4-hydroxylproline-catalyzed direct aldol reaction between acetone and 4-nitrobenzaldehyde. Four transition structures associated with the stereo-controlling step of the reaction have been determined. They are corresponding to the anti and syn arrangements of the methylene moiety related to the carboxylic acid group in enamine intermediate and the si and re attacks to the aldehyde carbonyl carbon. The effect of DMSO solvent on the stereo-controlling step was investigated with polarized continuum model (PCM). The computed energies of the transition states reveal the moderate enantioselectivity of the reaction.  相似文献   

18.
A series of networked polymers bearing isocyanurate moiety was synthesized by cyclotrimerization of diisocyanates, with employing methylenediphenyl 4,4′‐diisocyanate and 1,6‐hexamethylenediisocyanate (HMDI) in several feed ratios. In spite of the large difference in intrinsic reactivity between these two diisocyanates, their coannulation proceeded efficiently by using sodium p‐toluenesulfinate (pTolSO2Na) and 1,3‐dimethyl‐2‐imidazolidinone as a catalyst and a solvent, respectively. The resulting networked polymers were transparent and exhibited excellent thermal stability. In addition, HMDI‐rich feed ratios allowed for the formation of networked polymers with increased flexibility. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2631–2637  相似文献   

19.
Different kinds of porous organic polymers (POPs) bearing 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BDP) fluorophores have been developed to generate singlet oxygen upon light illumination. Herein, four imine‐linked POPs were prepared by copolymerization of amine and aldehyde with different ratios of di‐aldehyde A1 and A2. The POPs were investigated by a combination of techniques such as solid 13C NMR, FTIR, and nitrogen absorption–desorption isotherms and electronic microscopy. The results demonstrated that these POPs were prone to form hierarchical porous architectures. Scanning electron microscopy and transmission electron microscopy images revealed that the spherical morphologies showed different roughness, that is, BDP‐POPs with more BDP aldehyde A2 presented rougher surface. Finally, these POPs were used to generate singlet oxygen (1O2) monitored by 1,3‐diphenylisobenzofuran and bioimaging in HeLa cells. Our results indicated that the ability to generate 1O2 is dependent on the amount of BDP. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 319–327  相似文献   

20.
The reaction of N‐phthaloyl‐L ‐leucine acid chloride (1) with isoeugenol (2) was carried out in chloroform, and novel optically active isoeugenol ester derivative 3 as a chiral monomer was obtained in high yield. Compound 3 was characterized by 1H‐NMR, IR, and mass and elemental analysis and then was used for the preparation of model compound 5 and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione, PhTD (4), was allowed to react with compound 3. The reaction is very fast and gives only one diastereomer of 5 via Diels–Alder and ene pathways in quantitative yield. In order to explain this diastereoselectivity, a nonconcerted two‐step mechanism involving benzylic cation (BC) and aziridinium (AI) have been proposed for the Diels–Alder and ene reactions, respectively. The polymerization reactions of novel monomer 3 with bis(triazolinedione)s [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane (8) and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane] (9)] were performed in N,N‐dimethylacetamide (DMAc) at room temperature. The reactions are exothermic, fast, and gave novel optically active polymers 10 and 11 via repetitive Diels–Alder–ene polyaddition reactions. These polymers have inherent viscosities in a range about 0.18–0.22 dL/g. Some physical properties and structural characterizations of these new polymers have been studied and are reported. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1211–1219, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号