首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodamage to the endoplasmic reticulum (ER) can initiate a death pathway termed paraptosis. The “canonical” model of paraptosis, initiated by certain drugs and other stimuli, requires a brief interval of protein synthesis, involves the action of MAP kinases and can be followed by biochemical markers. The latter include changes in expression of AIP-1/Alix and IGF-1R proteins and translocation of HMGB-1 from nucleus to plasma membrane. There is also a report indicating that an enhanced level of autophagy can impair death by paraptosis. The pathway to paraptosis follows the canonical pathway when ER photodamage is minor (<LD50). When the extent of ER photodamage approaches LD90 levels, there are deviations from the “canonical” pathway: interfering with protein synthesis does not prevent paraptosis nor does a brief chilling of cells after irradiation, MAP kinases are not involved, and stimulation of autophagy was not cytoprotective. We had previously speculated that ER protein cross-linking might potentiate paraptosis (Photochem. Photobiol. 95, 2019, 1239) but this appears to be incorrect. At higher PDT doses, substantial cross-linking of a typical ER protein (BiP, binding immunoglobin protein, an HSP chaperone) was detected and paraptosis was impaired. This may relate to decreased mobility of cross-linked proteins. Other pathways to cell death were then observed.  相似文献   

2.
A death mode termed paraptosis is initiated by photodamage to the endoplasmic reticulum (ER). This is characterized by an extensive pattern of cytoplasmic vacuole formation and leads to a gradual loss of cytoplasm and of viability. Many photosensitizers in clinical use target sub‐cellular organelles that include the ER and can, therefore, invoke paraptosis as well as apoptosis. In this study, we explore pathways to paraptosis in OVCAR‐5, an ovarian cancer cell line of human origin. At low PDT doses, the route to paraptosis follows the pattern that occurs after chemotherapy, that is, a pattern of vacuole formation that can be suppressed by MAPK antagonists or inhibition of new protein synthesis. At PDT doses clinically pertinent for tumor eradication, the pathway to paraptosis appears to be independent of these factors. In addition to morphologic changes, translocation of the nuclear protein HMGB1(high mobility group protein B1) to the cell periphery has been described as a potential marker for drug‐induced paraptosis. This occurs to only a very minor extent after a lethal PDT dose that targets the ER. It appears that a lethal level of ER photodamage can initiate a different pathway to paraptosis, perhaps associated with ER protein cross‐linking.  相似文献   

3.
Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(−) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(−) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.  相似文献   

4.
Photodynamic therapy (PDT) directed against the endoplasmic reticulum (ER) is also known to target antiapoptotic Bcl-2 family proteins. This effect is associated with the initiation of both apoptosis, a cell death pathway, and autophagy, an organelle recycling system that can lead to survival or cell death. In this study, we examined the ability of the Bcl-2 antagonist HA14-1 to promote the photodynamic efficacy of PDT directed at the ER. At concentrations that independently caused only a small loss of viability, HA14-1 markedly enhanced the proapoptotic and phototoxic effects of ER photodamage. These results provide additional evidence that the antiapoptotic properties of Bcl-2 constitute an important determinant of photokilling, and demonstrate that synergistic effects can result when PDT is coupled with pharmacologic suppression of Bcl-2 function.  相似文献   

5.
In prior studies, we have identified the ability of low‐level lysosomal photodamage to potentiate the phototoxic effect of subsequent photodamage to mitochondria. The mechanism involves calpain‐mediated cleavage of the autophagy‐associated protein ATG5 to form a proapoptotic fragment (tATG5). In this report, we explore the permissible time lag between the two targeting procedures along with the effect of simultaneously targeting both lysosomes and mitochondria. This was found to be as effective as the sequential protocol with no gap between the irradiation steps. Inhibition of calpain reversed the enhanced efficacy of the “simultaneous” protocol. It appears that even a minor level of lysosomal photodamage can have a significant effect on the efficacy of subsequent mitochondrial photodamage. We propose that these results may explain the efficacy of Photofrin, a photosensitizing product that also targets both lysosomes and mitochondria for photodamage.  相似文献   

6.
Prior studies demonstrated that a low level (LD10–15) of lysosomal photodamage can sensitize cells to the apoptotic death that results from subsequent mitochondrial photodamage. We have proposed that this process occurs via a calpain‐catalyzed cleavage of the autophagy‐associated protein ATG5 to form a proapoptotic fragment. In this report, we provide evidence for the postulated ATG5 cleavage and show that the sequential photodynamic therapy (PDT) protocol can also partly overcome the adverse effect of hypoxia on the initiation of apoptosis. While autophagy can offer cytoprotection after mitochondrial photodamage, this does not appear to apply when lysosomes are the target. This may account for the ability of very low PDT doses directed at lysosomes to evoke ATG5 cleavage. The resulting proapoptotic effect overcomes intrinsic cytoprotection from mitochondrial photodamage along with a further stimulation of phototoxicity.  相似文献   

7.
We previously reported that low‐level lysosomal photodamage enhanced the efficacy of subsequent mitochondrial photodamage, resulting in a substantial promotion of apoptotic cell death. We now extend our analysis of the sequential PDT protocol to include two additional lysosomal‐targeting photosensitizers. These agents, because of enhanced permeability, are more potent than the agent (N‐aspartyl chlorin E6, NPe6) used in the initial study. Addition of the cell‐permeable cysteine protease inhibitor E‐64d and calcium chelator BAPTA‐AM almost completely suppressed sequential PDT‐induced loss of mitochondrial membrane potential and activation of procaspases‐3 and ‐7. These inhibitors did not, however, suppress the proapoptotic effect of a BH3 mimetic or mitochondrial photodamage. Knockdowns of ATG7 or ATG5, proteins normally associated with autophagy, suppressed photodamage induced by the sequential PDT protocol. These effects appear to be independent of the autophagic process as pharmacological inhibition of autophagy offered no such protection. Effects of ATG7 and ATG5 knockdowns may reflect the role that ATG7 plays in regulating lysosome permeability, and the likelihood that a proteolytic fragment of ATG5 amplifies mitochondrial proapoptotic processes. Our results suggest that low‐dose photodamage that sequentially targets lysosomes and mitochondria may offer significant advantages over the use of single photosensitizers.  相似文献   

8.
A major objective in developing new treatment approaches for lethal tumors is to reduce toxicity to normal tissues while maintaining therapeutic efficacy. Photodynamic therapy (PDT) provides a mechanistically distinct approach to treat tumors without the systemic toxicity of chemotherapy drugs. PDT involves the light‐based activation of a small molecule, a photosensitizer (PS), to generate reactive molecular species (RMS) that are toxic to target tissue. Depending on the PS localization, various cellular and subcellular components can be targeted, causing selective photodamage. It has been shown that targeted lysosomal photodamage followed by, or simultaneous with, mitochondrial photodamage using two different PS results in a considerable enhancement in PDT efficacy. Here, two liposomal formulations of benzoporphyrin derivative (BPD): (1) Visudyne (clinically approved) and (2) an in‐house formulation entrapping a lipid conjugate of BPD are used in combination with direct PS localization to mitochondria, endoplasmic reticulum and lysosomes, enabling simultaneous photodamage to all three organelles using a single wavelength of light. Building on findings by our group, and others, this study demonstrates, for the first time in a 3D model for ovarian cancer, that BPD‐mediated photodestruction of lysosomes and mitochondria/ER significantly enhances PDT efficacy at lower light doses than treatment with either PS formulation alone.  相似文献   

9.
Photodynamic therapy (PDT ) has the potential to make a significant impact on cancer treatment. PDT can sensitize malignant tissues to light, leading to a highly selective effect if an appropriate light dose can be delivered. Variations in light distribution and drug delivery, along with impaired efficacy in hypoxic regions, can reduce the overall tumor response. There is also evidence that malignant cells surviving PDT may become more aggressive than the initial tumor population. Promotion of more effective direct tumor eradication is therefore an important goal. While a list of properties for the “ideal” photosensitizing agent often includes formulation, pharmacologic and photophysical elements, we propose that subcellular targeting is also an important consideration. Perspectives relating to optimizing PDT efficacy are offered here. These relate to death pathways initiated by photodamage to particular subcellular organelles.  相似文献   

10.
In our previous paper, we reported that amphiphilic Ir complex–peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)–calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.  相似文献   

11.
Photodynamic therapy (PDT) can cause lethal photodamage by both direct and indirect mechanisms. Direct modes of cell death relate to nonspecific necrosis and the initiation of signaling pathways that elicit apoptosis, autophagy or both. In this report, effects of low-dose and high-dose PDT are explored, comparing sensitizers that localize in the endoplasmic reticulum (the porphycene termed CPO) or mitochondria (mesochlorin). To explore the role of autophagy, two cell lines were examined--the murine L1210 leukemia and an Atg7 knockdown derivative of L1210. The Atg7 gene is central to the process of autophagy. High-dose PDT with either sensitizer resulted in a substantial loss of the Bcl-2 protein. As Bcl-2 regulates both apoptosis and autophagy, loss of this protein can lead to initiation of either or both processes. Low-dose PDT with either sensitizer resulted in the initiation of apoptosis in the L1210/Atg7- cell line and a 20% loss of viability. In contrast, the same PDT dose led to the rapid appearance of autophagic cells in the L1210 line, less apoptosis and only a 5% loss of viability. These results are consistent with autophagy serving as a pro-survival response via the recycling of damaged organelles. At a higher PDT dose more apoptosis was again seen in the L1210/Atg7- line, but both cell lines exhibited comparable cytotoxicity in colony formation assays. We conclude that autophagy offers protection from the phototoxic effects of low-dose PDT, but can serve as an alternate death mode when the PDT dose is increased.  相似文献   

12.
The endoplasmic reticulum (ER) plays an important role in the regulation of protein synthesis. Alterations in the folding capacity of the ER induce stress, which activates three ER sensors that mediate the unfolded protein response (UPR). Components of the pathways regulated by these sensors have been shown to regulate autophagy. The last corresponds to a mechanism of self-eating and recycling important for proper cell maintenance. Ultraviolet radiation (UV) is an external damaging stimulus that is known for inducing oxidative stress, and DNA, lipid and protein damage. Many controversies exist regarding the role of UV-inducing ER stress or autophagy. However, a connection between the three of them has not been addressed. In this review, we will discuss the contradictory theories regarding the relationships between UV radiation with the induction of ER stress and autophagy, as well as hypothetic connections between UV, ER stress and autophagy.  相似文献   

13.
To determine the initial photodamage sites of Foscan-mediated photodynamic treatment, we evaluated the enzymatic activities in selected organelles immediately after light exposure of MCF-7 cells. The measurements indicated that the enzymes located in the Golgi apparatus (uridine 5'-diphosphate galactosyl transferase) and in the endoplasmic reticulum (ER) (nicotinamide adenine dinucleotide [reduced] [NADH] cytochrome c [cyt c] reductase) are inactivated by the treatment, whereas mitochondrial marker enzymes (cyt c oxidase and dehydrogenases) were unaffected. This indicates that the ER and the Golgi apparatus are the primary intracellular sites damaged by Foscan-mediated PDT in MCF-7 cells. We further investigated whether the specific mitochondria events could be associated with Foscan photoinduced cell death. The dose response profiles of mitochondrial depolarization and cytochrome c release immediately after Foscan-based PDT were very different from that of overall cell death. By 24 h post-PDT the fluence dependency was strikingly similar for both mitochondrial alterations and cell death. Therefore, although mitochondria are not directly affected by the treatment, they can be strongly implicated in Foscan-mediated MCF-7 cell death by late and indirect mechanism.  相似文献   

14.
Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5′–adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.  相似文献   

15.
The cationic photosensitizing triaryl methane dye Victoria Blue BO (VBBO) localizes in mitochondria and causes oxidative damage to this organelle during photodynamic therapy (PDT). Oxidative stresses from other photosensitizers induce a variety of stress proteins. The endoplasmic reticulum (ER)-based, calcium-binding stress protein GRP78 is a putative protective factor for photo-sensitizers such as Photofrin® that damage multiple intracellular sites and for several cytotoxic agents. In the current study VBBO-PDT was found to induce glucose-regulated protein (GRP)78. However, in contrast to other drugs, rather than being protected, human squamous carcinoma cells (FaDu) induced to express GRP78 by calcium ionophore A23187 became more sensitive to PDT. A line of Chinese hamster ovary cells (C.-1) constitutively overexpressing GRP78 also were more sensitive. Cytotoxicity of the A23187 treatment and VBBO was synergistic, with more than 11-fold potentiation with light irradiation, but was only additive in the dark. The in-creased cell killing was not due to differences in VBBO uptake or to changes in the intracellular localization of VBBO caused by calcium ionophore or GRP78. Thus, GRP78 appears to enhance rather than protect against VBBO-induced mitochondrial photodamage and contributes to cell death. This novel finding possibly may stem from the effects of GRP78, ER Ca2+ stores and ATP consumption on the Ca2+ and ATP-dependent mitochondrial permeability transition that may be evoked by PDT damage to the mitochondrial respiratory chain. The work suggests interventions that may potentiate PDT with mitochondrial targeting sensitizers and potential enhancements in efficacy when GRP78 is upregulated biologically or pharmacologically.  相似文献   

16.
The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy‐associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9‐dimethyl methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light‐induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub‐G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy‐associated cell death and S‐phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53‐related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity.  相似文献   

17.
The acetoxymethyl ester of chlorin e6 (CAME) was initially designed to be a hydrophobic photosensitizing agent that would be recognized by an endocytic pathway and initially accumulated in lysosomes. This was expected to lead to hydrolysis of the ester groups, followed by redistribution of the free chlorin to other subcellular sites. In this study, we examined the patterns of localization of CAME and of subsequent photodamage in murine leukemia L1210 cells. The drug was initially localized at intracellular sites, yielding a pattern similar to that obtained with a fluorescent probe for acidic intracellular vesicles and endosomes. A brief (30 min) incubation with 10 microM CAME followed by irradiation led to mitochondrial photodamage and apoptotic cell death. At a higher drug level, or with a longer incubation time, we observed additional photodamage to the plasma membrane and to lysosomes. The higher photodynamic therapy dose led to inhibition of apoptosis, with cell death likely occurring via a necrotic process. Distribution of CAME among the components of human plasma was to albumin > high-density lipoprotein > low-density lipoprotein. These results have implications concerning the likely mechanism of CAME accumulation and subcellular distribution.  相似文献   

18.
The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.  相似文献   

19.
One of the 'second generation' photosensitizing agents is N-acetyl chlorin e6 (NPe6). This product has a strong absorbance band at 665 nm, permitting treatment at a greater depth of tumor than earlier agents based on porphyrin structures. We examined the effects of fractionated drug administration on photodynamic efficacy. Prior studies had shown that it is the level of NPe6 in the circulation that predicts for photodynamic efficacy, indicating vascular shut-down to be the predominant mode of tumor control. Although pharmacokinetic studies revealed that >99% of NPe6 was lost from the circulation, it appears that a fractionated dosage protocol can promote photodamage to neoplastic tissue in vivo. This study also indicated the potential utility of an implantable micro array for tumor irradiation.  相似文献   

20.
Rutin is a bioactive compound that possesses anti-tumor activities through triggering apoptosis. Triple-negative breast cancer (TNBC) is insensitive to targeted anti-tumoral drugs, and drug resistance in TNBC poses a challenge for a successful cure. The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. This study aimed to find potential ER stress targets in triple-negative breast cancer. The viability of cells was evaluated using an MTT assay. Cell migration and proliferation were done by wound scratch and colony formation assay. Cell cycle detection, measurement of ER stress, mitochondrial membrane potential disruption, and cell death identification was performed using flow cytometry. The interaction of rutin with ER stress proteins is predicted using in silico docking. The pattern of gene expression was determined by qRT-PCR. The elevated rate of cell viability, cell cycle arrest, ER stress, MMP, and apoptotic induction was observed in combination treatment. Rutin exhibited the highest glide score with ASK1 and JNK. The results of qRT-PCR showed that rutin induced apoptosis through upregulation of ASK1 and JNK. The present study provides strong evidence supporting an important role of the ER stress response in mediating rutin-induced apoptosis in triple-negative breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号