首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

2.
Three anisole building blocks featuring bis(hydroxymethyl) or bis(bromomethyl) pendants have been analyzed with regard to their molecular structures and packing behaviour. The compounds are ethyl 3,5‐bis(hydroxymethyl)‐4‐methoxybenzoate, C12H16O5, (I), [5‐bromo‐3‐(hydroxymethyl)‐2‐methoxyphenyl]methanol [or 4‐bromo‐2,6‐bis(hydroxymethyl)anisole], C9H11BrO3, (II), and 5‐bromo‐1,3‐bis(bromomethyl)‐2‐methoxybenzene [or 4‐bromo‐2,6‐bis(bromomethyl)anisole], C9H9Br3O, (III). A typical supramolecular pattern involved C—H…π interactions generating molecular stacks, while π–π interactions were only observed in the absence of bromine, indicating a striking influence on the distances between adjacent aromatic moieties. When comparing bis(hydroxymethyl) compound (II) with bis(bromomethyl) compound (III), we found that the strong O—H…O hydrogen bonds in a zigzag arrangement in the first are replaced by C—H…Br interactions in the second without a change in the general packing.  相似文献   

3.
Two novel hypervalent selenium(IV) compounds stabilized by intramolecular interactions, namely 6‐phenyl‐6,7‐dihydro‐5H‐2,3‐dioxa‐2aλ4‐selenacyclopenta[hi]indene, C14H12O2Se, 14 , and 5‐phenyl‐5,6‐dihydro‐4H‐benzo[c][1,2]oxaselenole‐7‐carbaldehyde, C14H12OSe2, 15 , have been synthesized by the reaction of 2‐chloro‐1‐formyl‐3‐(hydroxymethylene)cyclohexene with in‐situ‐generated disodium diselenide (Na2Se2). The title compounds were characterized by FT–IR spectroscopy, ESI–MS, and single‐crystal X‐ray diffraction studies. For 14 , there is whole‐molecule disorder, with occupancies of 0.605 (10) and 0.395 (10), a double bond between C and Se, and the five‐membered selenopentalene rings are coplanar. The packing is stabilized by π–π stacking interactions involving one of the five‐membered Se/C/C/C/O rings [centroid–centroid (CgCg) distance = 3.6472 (18) Å and slippage = 1.361 Å], as well as C—H…π interactions involving a C—H group and the phenyl ring. In addition, there are bifurcated C—H…Se,O interactions which link the molecules into ribbons in the c direction. For 15 , the C—Se bond lengths are longer than those of 14 . The two five‐membered rings are coplanar. There are no π–π or C—H…π interactions; however, molecules are linked by C—H…O interactions into centrosymmetric dimers, with graph‐set notation R22(16).  相似文献   

4.
The synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety have attracted interest as these compounds are important pharmacophores. The crystal structures of three closely related N‐aryl‐2,5‐dimethoxybenzenesulfonamides, namely N‐(2,3‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (I), N‐(2,4‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (II), and N‐(2,4‐dimethylphenyl)‐2,5‐dimethoxybenzenesulfonamide, C16H19NO4S, (III), are described. The asymmetric unit of (I) consists of two symmetry‐independent molecules, while those of (II) and (III) contain one molecule each. The molecular conformations are stabilized by different intramolecular interactions, viz. C—H…O interactions in (I), N—H…Cl and C—H…O interactions in (II), and C—H…O interactions in (III). The crystals of the three compounds display different supramolecular architectures built by various weak intermolecular interactions of the types C—H…O, C—H…Cl, C—H…π(aryl), π(aryl)–π(aryl) and Cl…Cl. A detailed Hirshfeld surface analysis of these compounds has also been conducted in order to understand the relationship between the crystal structures. The d norm and shape‐index surfaces of (I)–(III) support the presence of various intermolecular interactions in the three structures. Analysis of the fingerprint plots reveals that the greatest contribution to the Hirshfeld surfaces is from H…H contacts, followed by H…O/O…H contacts. In addition, comparisons are made with the structures of some related compounds. Putative N—H…O hydrogen bonds are observed in 29 of the 30 reported structures, wherein the N—H…O hydrogen bonds form either C (4) chain motifs or R 22(8) rings. Further comparison reveals that the characteristics of the N—H…O hydrogen‐bond motifs, the presence of other interactions and the resultant supramolecular architecture is largely decided by the position of the substituents on the benzenesulfonyl ring, with the nature and position of the substituents on the aniline ring exerting little effect. On the other hand, the crystal structures of (I)–(III) display several weak interactions other than the common N—H…O hydrogen bonds, resulting in supramolecular architectures varying from one‐ to three‐dimensional depending on the nature and position of the substituents on the aniline ring.  相似文献   

5.
The crystal structure of 6‐chloro‐2,4‐dihydro‐1H‐3,1‐benzoxazine‐2,4‐dione (5‐chloroisatoic anhydride), C8H4ClNO3, has been determined and analysed in terms of connectivity and packing patterns. The compound crystallizes in the noncentrosymmetric space group Pna21 with one molecule in the asymmetric unit. The role of different weak interactions is discussed with respect to three‐dimensional network organization. Molecules are extended into one‐dimensional helical arrangements, making use of N—H…O hydrogen bonds and π–π interactions. The helices are further organized into monolayers via weak C—H…O and lone pair–π interactions, and the monolayers are packed into a noncentrosymmetric three‐dimensional architecture by C—Cl…π interactions and C—H…Cl and Cl…Cl contacts. A Hirshfeld surface (HS) analysis was carried out and two‐dimensional (2D) fingerprint plots were generated to visualize the intermolecular interactions and to provide quantitative data for their relative contributions. In addition, tests of the antimicrobial activity and in vitro cytotoxity effects against fitoblast L929 were performed and are discussed.  相似文献   

6.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

7.
The crystal structures of diphenyl (cycloheptylamido)phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), ( I ), and diphenyl (dibenzylamido)phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], ( II ), are reported. The NHC7H13 group in ( I ) provides two significant hydrogen‐donor sites in N—H…O and C—H…O hydrogen bonds, needed for a one‐dimensional hydrogen‐bond pattern along [100] in the crystal, while ( II ), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three‐dimensional supramolecular structure is mediated by C—H…π interactions. The conformational behaviour of the phenyl rings in ( I ), ( II ) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phosphorus and packing forces. From this study, synclinal (±sc), anticlinal (±ac) and antiperiplanar (±ap) conformations were found to occur. In the structure of ( II ), there is an intramolecular Cortho—H…O interaction that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar Cortho—H…O intramolecular interactions. The large contribution of the C…H/H…C contacts (32.3%) in the two‐dimensional fingerprint plots of ( II ) is a result of the C—H…π interactions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (Tm) at 109 and 81 °C for ( I ) and ( II ), respectively, which agree with the strengths of the intermolecular contacts and the melting points.  相似文献   

8.
The novel tetraphenylethylene derivative 4‐methyl‐N‐[3‐(1,2,2‐triphenylethenyl)phenyl]benzenesulfonamide (abbreviated as MTBF), C33H27NO2S, was synthesized successfully and characterized by single‐crystal X‐ray diffraction, high‐resolution mass spectroscopy and 1H NMR spectroscopy. MTBF crystallizes in the centrosymmetric monoclinic space group P21/c. In the crystal structure, the MTBF molecules are connected into a one‐dimensional band and then a two‐dimensional sheet by hydrogen bonds of the N—H…O and C—H…O types. The sheets are further linked to produce a three‐dimensional network via C—H…π interactions. The molecules aggregate via these intermolecular forces, which restrain the intramolecular motions (RIM) and decrease the energy loss in the aggregation state, so as to open the radiative channels, and thus MTBF exhibits excellent fluorescence by aggregation‐induced emission (AIE) enhancement.  相似文献   

9.
The crystal structures of the antimicrobial drug tinidazole [ TNZ ; systematic name: 1‐(2‐ethylsulfonylethyl)‐2‐methyl‐5‐nitroimidazole, C8H13N3O4S] and the 1:1 cocrystal of TNZ with the naturally occurring compound vanillic acid ( VA ; systematic name: 4‐hydroxy‐3‐methoxybenzoic acid, C8H8O4), namely, the TNZ – VA cocrystal, were determined by single‐crystal X‐ray analysis at 100 K. The supramolecular structure of the TNZ – VA cocrystal is composed of a carboxylic acid dimer and an O—H…N(heterocycle) synthon in the form of layers made up of O—H…N and O—H…O hydrogen bonds. The layers are joined via C—H…O hydrogen bonds, π–π stacking and C—H…π interactions. The energy framework analysis, together with interaction energy calculations using the DLPNO‐CCSD(T) method, indicates that the TNZ – VA cocrystal inherits strong interactions from the TNZ and VA crystals, which accounts for the enhanced thermal stability and reduced dissolution rate. To the best of our knowledge, this is the first example of a cocrystal containing TNZ .  相似文献   

10.
The synthesis of a novel benzimidazole derivative with a long‐chain‐ester substituent, namely methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan‐1‐ol solvate, methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate octan‐1‐ol monosolvate, C22H26N2O3·C8H18O, (4), exhibits a four‐molecule hydrogen‐bonded motif in the solid state, with N—H…O hydrogen bonds between benzimidazole molecules and O—H…N hydrogen bonds between the octan‐1‐ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan‐1‐ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H…C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C—H…π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.  相似文献   

11.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

12.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds.  相似文献   

13.
Isostructurality is more likely to occur in multicomponent systems. In this context, three closely related solvates were crystallized, namely, benzene (C27H21BrO6·C6H6), toluene (C27H21BrO6·C7H8) and xylene (C27H21BrO6·C8H10) with methyl 3a‐acetyl‐3‐(4‐bromophenyl)‐4‐oxo‐1‐phenyl‐3,3a,4,9b‐tetrahydro‐1H‐furo[3,4‐c ]chromene‐1‐carboxylate, and their crystal structures determined. All three structures belong to the same space group (P ) and display similar unit‐cell dimensions and conformations, as well as isostructural crystal packings. The isostructurality is confirmed by unit‐cell and isostructural similarity indices. In each solvate, weak C—H…O and C—H…π interactions extend the molecules into two‐dimensional networks, which are further linked by C—H…Br and Br…Br interactions into three‐dimensional networks. The conformation of the core molecule is predominantly responsible for governing the isostructurality.  相似文献   

14.
The molecular and crystal structure of the widely used antiseptic benzyldimethyl{3‐[(1‐oxotetradecyl)amino]propyl}ammonium chloride monohydrate (Miramistin, MR ), C26H47N2O+·Cl?·H2O, was determined by a single‐crystal X‐ray diffraction study and analyzed in the framework of the QTAIM (quantum theory of atoms in molecules) approach using both periodic and molecular DFT (density functional theory) calculations. The various noncovalent intermolecular interactions of different strengths were found to be realized in the hydrophilic parts of the crystal packing (i.e. O—H…Cl, N—H…Cl, C—H…Cl, C—H…O and C—H…π). The hydrophobic parts are built up exclusively by van der Waals H…H contacts. Quantification of the interaction energies using calculated electron‐density distribution revealed that the total energy of the contacts within the hydrophilic and hydrophobic regions are comparable in value. The organic MR cation adopts the bent conformation with the head group tilted back to the long‐chain alkyl tail in both the crystalline and the isolated state due to stabilization of this geometry by several intramolecular C—H…π, C—H…N and H…H interactions. This conformation preference is hypothesized to play an important role in the interaction of MR with biomembranes.  相似文献   

15.
The hybrid βγ dipeptide, methyl 2‐[1‐({2‐[(tert‐butoxycarbonyl)amino]benzamido}methyl)cyclohexyl]acetate (Boc‐Ant‐Gpn‐OMe), C22H32N2O5, adopts a folded conformation stabilized by intramolecular six‐ (C6) and seven‐membered (C7) hydrogen‐bonded rings, together with weak C—H...O and C—H...π interactions, resulting in a ribbon‐like structure.  相似文献   

16.
The crystal and molecular structures of two ReI tricarbonyl complexes, namely fac‐tricarbonylchlorido[1‐(4‐fluorocinnamoyl)‐3‐(pyridin‐2‐yl‐κN)pyrazole‐κN2]rhenium(I), [ReCl(C17H12FN3O)(CO)3], (I), and fac‐tricarbonylchlorido[1‐(4‐nitrocinnamoyl)‐3‐(pyridin‐2‐yl‐κN)pyrazole‐κN2]rhenium(I) acetone monosolvate, [ReCl(C17H12ClN4O3)(CO)3]·C3H6O, (II), are reported. The complexes form centrosymmetric dimers that are linked into one‐dimensional columns by C—H…Cl and N—O…H interactions in (I) and (II), respectively. C—H…Cl interactions in (II) generate two R21(7) loops that merge into a single R21(10) loop. These interactions involve the alkene, pyrazole and benzene rings, hence restricting the ligand rotation and giving rise to a planar conformation. Unlike (II), complex (I) exhibits a twisted conformation of the ligand and a pair of molecules forms a centrosymmetric dimer with an R22(10) loop via C—H…O interactions. The unique supramolecular structures of (I) and (II) are determined by their planarity and weak interactions. The planar conformation of (II) provides a base for appreciable π–π stacking interactions compared to (I). In addition, an N—O…π interaction stabilizes the supramolecular structure of (II). We report herein the first n→π* interactions of ReI tricarbonyl complexes, which account for 0.33 kJ mol−1. Intermolecular C—H…Cl and C—H…O interactions are present in both complexes, with (II) showing a greater preference for these interactions compared to (I), with cumulative contributions of 48.7 and 41.5%, respectively. The influence of inductive (fluoro) and/or resonance (nitro) effects on the π‐stacking ability was further supported by LOLIPOP (localized orbital locator‐integrated π over plane) analysis. The benzene ring of (II) demonstrated a higher π‐stacking ability compared to that of (I), which is supported by the intrinsic planar geometry. The HOMA (harmonic oscillator model of aromaticity) index of (I) revealed more aromaticity with respect to (II), suggesting that NO2 greatly perturbed the aromaticity. The Hirshfeld fingerprint (FP) plots revealed the preference of (II) over (I) for π–π contacts, with contributions of 6.8 and 4.4%, respectively.  相似文献   

17.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

18.
The crystal structure of morphine bis­(1‐naph­tho­ate) [or 7,8‐di­de­hydro‐4,5‐epoxy‐17‐methyl­morphinan‐2,6‐diyl bis­(naph­thal­ene‐1‐carboxyl­ate)], C39H31NO5, determined at 123 K, shows extensive C—H...π interactions in the crystal lattice. Of particular interest is an intramolecular C—H...π interaction within the unit cell between the two naphthoyl groups. Comparison of the opiate scaffolds of morphine bis­(1‐naph­tho­ate) and morphine shows only a small increase in strain due to the steric bulk of the naphthoyl groups. The crystal packing shows distinct areas of packing for the naphthalene/aromatic groups and the opiate backbone. Extensive inter‐ and intramolecular C—H...π interactions lead to a densely packed aromatic region in the crystal lattice.  相似文献   

19.
The crystal structures of the title compounds (both C7H7ClO) are characterized by two independent mol­ecules in each of the asymmetric units and feature O—H...O, C—H...π and π–π interactions. In addition, intermolecular C—H...Cl and intramolecular O—H...Cl interactions are present in 2‐chloro‐5‐methyl­phenol. For each crystal, the non‐covalent interactions emphasize the different spatial environments for the two independent mol­ecules.  相似文献   

20.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号