首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
骨在组织工程中得到了非常广泛、深入的研究.支架材料与许多可降解材料一起也在进行探索性研究.用于骨组织工程的生物材料可以是三维多孔的刚硬材料,也可以是可注射材料.本文从聚合物角度综述了骨组织工程对支架材料的基本要求,用于骨组织工程的可降解生物材料、支架材料的设计和制备技术以及支架材料的表面修饰等方面的研究进展.  相似文献   

2.
通过模仿天然骨的成分、结构特性对材料进行设计与调控,获得新型仿生人工骨修复材料,这已成为骨修复材料发展的主要趋势之一。静电纺纳米纤维具有可调控的纳米结构、高孔隙率和大比表面积,可以模拟天然细胞外基质的结构和生物功能,被广泛应用于骨组织工程。本文提供一个基于骨组织工程的静电纺纳米纤维的全面概述。首先简要介绍了骨组织工程,并讨论了静电纺原理、参数和典型设备。随后,讨论了静电纺纳米纤维的表面改性方法,并通过关注最具代表性的实例重点介绍了与静电纺纳米纤维和静电纺纳米纤维增强复合材料的应用最相关的最新进展。此外,本综述展望了静电纺纳米纤维未来发展的挑战、机遇以及新方向。  相似文献   

3.
Three dimensional (3D) scaffolds have huge limitations due to their low porosity, mechanical strength, and lack of direct cell-bioactive drug contact. Whereas bisphosphonate drug has the ability to stimulate osteogenesis in osteoblasts and bone marrow mesenchymal stem cells (hMSC) which attracted its therapeutic use. However it is hard administration low bioavailability, and lack of site-specificity, limiting its usage. The proposed scaffold architecture allows cells to access the bioactive surface at their apex by interacting at the scaffold's interfacial layer. The interface of 3D polycaprolactone (PCL) scaffolds has been coated with alendronate-modified hydroxyapatite (MALD) enclosed in a chitosan matrix, to mimic the native environment and stupulate the through interaction of cells to bioactive layer. Where the mechanical strength will be provided by the skeleton of PCL. In the MALD composite's hydroxyapatite (HAP) component will govern alendronate (ALD) release behavior, and HAP presence will drive the increase in local calcium ion concentration increases hMSC proliferation and differentiation. In results, MALD show release of 86.28 ± 0.22. XPS and SEM investigation of the scaffold structure, shows inspiring particle deposition with chitosan over the interface. All scaffolds enhanced cell adhesion, proliferation, and osteocyte differentiation for over a week without in vitro cell toxicity with 3.03 ± 0.2 kPa mechanical strength.  相似文献   

4.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  相似文献   


5.
The present study delves into a combined bio‐nano‐macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio‐nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio‐nanocomposite is blended with 10 wt% of gelatin and examined as a non‐invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio‐nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application.

  相似文献   


6.
组织工程相关生物材料表面工程的研究进展   总被引:9,自引:0,他引:9  
生物材料用作人工细胞外基质(ECM ) 在组织工程中占据重要位置。本文在分析细胞2生物材料表面相互作用的基础上, 从生物材料中的水、材料表面的形态、材料表面的特异性识别及生物材料诱发愈合等方面探讨了生物材料的复杂性。生物材料对细胞的影响是一个双向、动态过程, 起着调节细胞增殖和凋亡平衡的作用。基于生物材料对细胞生长的影响, 本文提出了生物材料表面生物仿生化以提高细胞亲和力,糖链团簇、糖脂质及材料表面蛋白质修饰以提高细胞特异性识别, 材料表面的自组装修饰以改善表面形态等观点。  相似文献   

7.
左新钢  张昊岚  周同  高长有 《化学进展》2019,31(11):1576-1590
组织再生材料为细胞、组织的生长提供必要的物质基础,维持再生组织的形状和力学性能,并实现与周围组织的有机整合。其中,材料-细胞的相互作用是组织再生材料的核心问题。组织再生材料表界面的物理结构和化学性能可以直接影响细胞的黏附、铺展、增殖、迁移和分化等行为,进而影响组织修复和再生的效果。多数组织和器官具有立体结构,并具有更为精细的微结构。因此,三维组织再生材料体系的构建及其微结构调控是另外一个重要问题。本文结合本课题组近年的工作,综合国内外最新研究成果,重点介绍了生物材料表界面物理结构和理化性质对微粒吞噬、细胞黏附的影响、梯度材料对细胞黏附和定向迁移的作用、3D水凝胶中的细胞迁移行为及特点,以及用于皮肤和软骨组织修复与再生的植入材料,最后对生物材料在组织再生中的研究与应用进行了展望。  相似文献   

8.
9.
Polymeric scaffolds are three-dimensional, porous structures that may be used as a vehicle to deliver cells or therapeutic factors to repair tissue defects. Both biodegradable and non-biodegradable polymers have been developed for this purpose. In this review, we survey the polymers that have been investigated for cartilage tissue engineering and discuss the critical parameters for successful applications in the future.  相似文献   

10.
11.
Summary: Chemical modification of polymer surface may potentially be used to create smart materials that can guide cellular adhesion, proliferation and maintenance of specific expression of molecules. The microbial polyester poly (3-hydroxybutyrate) (PHB) has been attracted attention as promising material for applications in tissue engineering. In this work, a wet-chemical method, base ethylenediamine aminolysis, was performed to improve the adhesion of chondrocytes isolated from human articular cartilage to PHB films. The effects of chemical treatment on PHB films was evaluated by following changes in morphology and surface chemical composition using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. While the effect on cells morphology was studied by scanning electron microscopy (SEM). The treatment with ethylenediamine did not change significantly the morphology of the structures of PHB films surface. However, the roughness of the aminolyzed films was slightly higher. The introduction of nitrogen-containing groups was confirmed by XPS. In vitro experiments indicated that the surface modification did not have toxic effects in cells, since they could adhere and proliferate on modified PHB films. It was observed that long-time treatment improved ability of PHB films to support cell growth, which could be accounted to physicochemical and topological effects.  相似文献   

12.
Summary : Guided bone regeneration was shown to be successful in vitro and in vivo using resorbable or nonresorbable materials. Resorbable material has the advantage of progressive substitution by bone. Resorbable polymers of ∝-hydroxy acids like polylactide or polyglycolide are commonly used for tissue engineering and in guided bone regeneration. In clinical studies, guided bone regeneration was successful in non-weight bearing bone, e.g. in dental surgery and craniofacial surgery. This paper reports the preliminary result of using resorbable poly(L/DL-lactide) 80/20% scaffolds in weight bearing bone with infected large segmental defects as well as in small bony defects of hand due to benign tumour, bone graft donor sites and as an adjunct for joint fusion. Resorbable polylactide implants were used in the form of membranes, large 3-D sponges, chips or as injectable paste. Implants were impregnated with marrow blood to add an osteoinductive component. Long-term follow up revealed that these implants are promising candidates for bone graft substitutes.  相似文献   

13.
Summary: We have developed a self-reticulating polymer based on silanized hydroxypropylmethylcellulose (Si-HPMC). The aim of this study was to determine whether this Si-HPMC hydrogel with or without calcium phosphate granules could represent a potential scaffold for bone tissue engineering. This study showed that Si-HPMC hydrogel didn't affect SaOS-2 and rat bone marrow cells viability. In addition, SaOS-2 cells are able to proliferate within Si-HPMC hydrogel containing or not calcium phosphate granules whereas Rat bone marrow cells proliferate only at the surface of calcium phosphate granules contained within Si-HPMC hydrogel. Finally, SaOS-2 cells seeded at the surface of reticulated Si-HPMC were not able to penetrate the hydrogel, while J774, a macrophage cells line, were able to move into the Si-HPMC hydrogel. These data indicate that Si-HPMC is a promissing scaffold for tissue engineering.  相似文献   

14.
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.

  相似文献   


15.
Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l ‐lactide‐co‐ε‐caprolactone) (poly(LLA‐co‐CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA‐co‐CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC‐seeded poly(LLA‐co‐CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA‐co‐CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA‐co‐CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering.

  相似文献   


16.
17.
The strategy of incorporating bioactive inorganic nanomaterials without side effects as osteoinductive supplements is promising for bone regeneration. In this work, a novel biomass nanofibrous scaffold synthesized by electrospinning silica (SiO2) nanoparticles into polycaprolactone/chitosan (PCL/CS) nanofibers was reported for bone tissue engineering. The nanosilica-anchored PCL/CS nanofibrous bioscaffold (PCL/CS/SiO2) exhibited an interlinked continuous fibers framework with SiO2 nanoparticles embedded in the fibers. Compact bone-derived cells (CBDCs), the stem cells derived from the bone cortex of the mouse, were seeded to the nanofibrous bioscaffolds. Scanning electron microscopy and cell counting were used to observe the cell adhesion. The Counting Kit-8 (CCK-8) assay was used. Alkaline phosphatase (ALP), Alizarin red staining, real-time Polymerase Chain Reaction and Western blot tests were performed to confirm the osteogenesis of the CBDCs on the bioscaffolds. The research results demonstrated that the mechanical property of the PCL together with the antibacterial and hydrophilic properties of the CS are conducive to promoting cell adhesion, growth, migration, proliferation and differentiation. SiO2 nanoparticles, serving as bone induction factors, effectively promote the osteoblast differentiation and bone regeneration. This novel SiO2-anchored nanofibrous bioscaffold with superior bone induction activity provides a better way for bone tissue regeneration.  相似文献   

18.
Porous, 3D chitosan/biphasic calcium phosphate (BCP) scaffolds were used to prepare tissue engineering constructs for maxillofacial bone tissue reconstruction. Mesenchymal stem cells (MSC's) were seeded and cultured on clinically relevant sized scaffolds. In vitro engineered constructs facilitated the healing of mandibular defects in pigs if accompanied with delivery of basic fibroblast growth factor (bFGF).  相似文献   

19.
Recently, the application of nanostructured materials in the field of tissue engineering has garnered attention to mediate treatment and regeneration of bone defects. In this study, poly(l ‐lactic acid) (PLLA)/gelatin (PG) fibrous scaffolds are fabricated and β‐cyclodextrin (βCD) grafted nano‐hydroxyapatite (HAp) is coated onto the fibrous scaffold surface via an interaction between βCD and adamantane. Simvastatin (SIM), which is known to promote osteoblast viability and differentiation, is loaded into the remaining βCD. The specimen morphologies are characterized by scanning electron microscopy. The release profile of SIM from the drug loaded scaffold is also evaluated. In vitro proliferation and osteogenic differentiation of human adipose derived stem cells on SIM/HAp coated PG composite scaffolds is characterized by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red S staining), and real time Polymerase chain reaction (PCR). The scaffolds are then implanted into rabbit calvarial defects and analyzed by microcomputed tomography for bone formation after four and eight weeks. These results demonstrate that SIM loaded PLLA/gelatin/HAp‐(βCD) scaffolds promote significantly higher ALP activity, mineralization, osteogenic gene expression, and bone regeneration than control scaffolds. This suggests the potential application of this material toward bone tissue engineering.

  相似文献   


20.
Advanced drug delivery systems employing controlled release technology are being developed to address many of the difficulties associated with traditional methods of drug administration. Controlled release technology involves the use of devices such as polymer‐based disks, rods, pellets, or microspheres (MSs) that encapsulate drugs, genes, cytokines, and growth factors and release them in specific location within the body in a controlled fashion, for relatively long periods of time. Among these, microencapsulation is one of the core technologies used in polymer‐based drug delivery systems. In this regard, MS serves as microcarriers for sustain drug release facilitating their use for invasive or minimally invasive treatment. MS has significant potential for the application in bone repair, intra‐articular treatment of osteoarthritis, and biological bone growth. The present review compiles the recent advances in polymeric MS for application in bone and cartilage regeneration. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号