首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The chemistry of transition‐metal complexes with unusually high coordination numbers has been of interest because of their application in catalytic and biological systems. Deprotonation of the ionogenic tetradentate ligand 6,6′‐bis(1H‐tetrazol‐5‐yl)‐2,2′‐bipyridine [H2bipy(ttr)2] in the presence of iron(III) and tetra‐n‐butylammonium bromide, [n‐Bu4N]Br, in solution resulted in the synthesis of a rare octacoordinated anionic mononuclear complex, tetra‐n‐butylammonium bis[6,6′‐bis(tetrazol‐1‐id‐5‐yl)‐2,2′‐bipyridine]iron(III) methanol hemisolvate dihydrate, (C16H36N)[Fe(C12H6N10)2]·0.5CH3OH·2H2O or [n‐Bu4N][Fe{bipy(ttr)2}2]·0.5CH3OH·2H2O ( 1 ), which has been structurally characterized by elemental analysis, powder X‐ray diffraction (PXRD) and single‐crystal X‐ray diffraction. In 1 , the coordination sphere of the iron(III) ion is a distorted bis‐disphenoid dodecahedron, in which the eight coordination positions are occupied by eight N atoms from two independent tetradentate [bipy(ttr)2]2? anionic ligands, therefore forming the anionic [Fe{bipy(ttr)2}2]? unit, with the negative charge balanced by a free [n‐Bu4N]+ cation. An investigation of the magnetic properties of 1 revealed a gradual incomplete spin‐crossover behaviour below 150 K.  相似文献   

2.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

3.
Mononuclear complexes are good model systems for evaluating the effects of different ligand systems on the magnetic properties of iron(II) centres. A novel crystal structure of the title compound, [Fe(C18H24N10)](BF4)2·CH3OH, with one molecule of methanol per formula unit exhibits a strictly sixfold coordination sphere associated with a low‐spin configuration at the metal centre. The incorporated methanol solvent molecule promotes extended hydrogen‐bonding networks between the tetrafluoridoborate anions and the cationic units. A less constrained crystal structure regarding close contacts between the tetrafluoridoborate anions and the cationic units allows a spin transition which is inhibited in the previously published hydrate of the title compound.  相似文献   

4.
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.  相似文献   

5.
The title compound, poly[[diaqua‐1κ2O‐tetrakis(μ3‐pyridine‐2,3‐dicarboxylato)‐2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2‐diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P) symmetry, was prepared by the reaction of pyridine‐2,3‐dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine‐2,3‐dicarboxylate (pydc2−) ligand exhibits μ3‐η1111 and μ3‐η11111 coordination modes, bridging two FeIII cations and one SrII cation. The SrII cation, which is located on an inversion centre, is eight‐coordinated by six O atoms of four pydc2− ligands and two water molecules. The coordination geometry of the SrII cation can be best described as distorted dodecahedral. The FeIII cation is six‐coordinated by O and N atoms of four pydc2− ligands in a slightly distorted octahedral geometry. Each FeIII cation bridges two neighbouring FeIII cations to form a one‐dimensional [Fe2(pydc)4]n chain. The chains are connected by SrII cations to form a three‐dimensional framework. The topology type of this framework is tfj . The structure displays O—H...O and C—H...O hydrogen bonding.  相似文献   

6.
    
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

7.
    
《Supramolecular chemistry》2012,24(8):641-653
Six salts of mononuclear manganese(III) complexes with Schiff-base ligands L3–L5 are reported. Solvated complexes with L3, [MnL3]ClO4·0.5MeOH, 3a, and [MnL3]NO3·EtOH, 3b, are low spin (LS) at 80 K and exhibit a gradual and incomplete spin crossover (SCO) on warming to 281 K. Complexes with L4, [MnL4]ClO4, 4a, and [MnL4]NO3, 4b, are predominantly high spin (HS) at RT and undergo gradual and incomplete SCO on cooling. Complexes [MnL5]NO3, 5b, and [MnL5]PF6, 5c, are fully HS over the measured temperature range. Both salts with the dihalogenated ligand L3, 3a and 3b, crystallise with alcohol solvent molecules and exhibit discrete cation–counterion hydrogen bonding and a hydrogen-bonded macrocyclic anion–cation–solvent dimer, respectively. Complex 4a contains two unique complex sites, each with internal rotation symmetry, which assemble into 1D hydrogen-bonded chains at 100 K, which persist on warming to RT. Complex 4b also contains two unique cation sites, without internal symmetry, one of which shows a discrete cation–anion hydrogen bond similar to that of 3a, which dissociates on warming. Complex 5c forms a weak hydrogen bond between complex and counterion, whereas 5b does not participate in any hydrogen bonding.  相似文献   

8.
Switchable molecules : The electronic configurations of the Fe center in trans‐[Fe(tzpy)2(NCS)2] in low‐spin, high‐spin, and LIESST states (LIESST=light‐induced excited spin‐state trapping) were confirmed by K‐ and L‐edge X‐ray absorption and magnetic measurements. The molecular structures at 40 K before and after irradiation are superimposed in the picture, which demonstrates a single‐crystal‐to‐single‐crystal transition by irradiation.

  相似文献   


9.
    
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

10.
11.
Synthesis of a mixed complex compound Pb2[Fe(CN)6]NO3·5.5H2O is described. The results of its X-ray structural investigation are presented. Crystal data: C6H11FeN7O8.50Pb2: a = 7.2582(6) Å, b = 21.838(3) Å, c = 11.612(1) Å; β = 107.91(1)°, V = 1751.4(3) Å3, Z = 4, dcalc = 2.986 g/cm3, space group P21/m, R = 0.038. The compound has a framework polymer structure.  相似文献   

12.
    
The synthesis and crystal structure (100 K) of the title compound, ammonium bis[salicylaldehyde thiosemicarbazonato(2?)‐κ3O,N1,S]iron(III), NH4[Fe(C8H7N3OS)2], is reported. The asymmetric unit consists of an octahedral [FeIII(thsa)2]? fragment, where thsa2? is salicylaldehyde thiosemicarbazonate(2?), and an NH4+ cation. Each thsa2? ligand binds via the thiolate S, the imine N and the phenolate O donor atoms, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. The FeIII ion is in the low‐spin state at 100 K. The crystal structure belongs to a category I order–disorder (OD) family. It is a polytype of a maximum degree of order (MDO). Fragments of the second MDO polytype lead to systematic twinning by pseudomerohedry.  相似文献   

13.
    
A new ionic pentanuclear FeIII cluster, namely, triethylazanium tetrakis(μ2‐5‐amino‐1,2,3,4‐tetrazolido)tetrakis(μ3‐4‐chloro‐2‐{[(1H‐tetrazol‐1‐id‐5‐yl)imino]methyl}phenolato)di‐μ3‐oxido‐pentairon(III) acetonitrile monosolvate monohydrate, (C6H16N)[Fe5(C8H4ClN5O)4(CH2N5)4O2]·CH3CN·H2O, was synthesized using microvial synthesis methods and characterized by elemental analysis, FT–IR spectroscopy, single‐crystal X‐ray diffraction and thermogravimetric analysis. Magnetic studies reveal that the complex displays dominant antiferromagnetic intracluster interactions between the FeIII ions through the μ3‐oxide bridges.  相似文献   

14.
The cadmium atom is coordinated in distorted pentagonal bipyramidal geometry by the pyridine‐nitrogen atom of the 4‐[N,N‐bis(2‐cyanoethyl)amino]pyridine ligand, two oxygen atoms of two methanol molecules and four oxygen atoms of two acetate groups. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The spin-crossover complex [Fe(teec)(6)](ClO(4))(2) (teec = chloroethyltetrazole) exhibits a 50 % incomplete spin crossover in the temperature range 300-30 K. Time-resolved synchrotron powder diffraction experiments have been carried out to elucidate its structural behavior. We report crystal structure models of this material at 300 K (high spin) and 90 K (low spin), as solved from synchrotron powder diffraction data by using Genetic Algorithm and Parallel Tempering techniques and refined with Rietveld refinement. During short synchrotron powder diffraction experiments (five minutes duration) two distinguishable lattices were observed the quantities of which vary with temperature. The implication of this phenomenon, that is interpreted as a structural phase transition associated with the high-to-low spin crossover, and the structural characteristics of the high-spin and low-spin models are discussed in relation to other compounds showing a similar type of spin-crossover behavior.  相似文献   

16.
Introduction of strong intermolecular interactions leads to the observation of the LIESST effect even for iron(III) spin‐crossover (SCO) compounds. For LIESST iron(III) compounds, both stretching and bending modes are considered in the reaction coordinate diagram. The picture depicts the LIESST mechanism in the reaction coordinate diagram considering both stretching and bending modes for SCO iron(III) compounds. For more information see the Full Paper by S. Hayami, O. Sato et al. on page 3497 ff.

  相似文献   


17.
18.
The complex [Fe(teec)6](BF4)2 (teec = chloroethyltetrazole) shows a two-step complete spin-crossover transition in the temperature range 300-90 K. Time-resolved synchrotron powder diffraction experiments have been carried out in this temperature range, and crystal structure models have been obtained from the powder patterns by using the parallel tempering technique. Of these models, the low-spin state structure at 90 K has been refined completely with Rietveld refinement. Its structural characteristics are discussed in relation to the high-spin state model and other spin-crossover compounds. The complex shows a remarkable anisotropic unit-cell parameter contraction that is dependent on the applied cooling rate. In addition, the possible important implications for the interpretation of spin-crossover behavior in terms of structural changes are discussed.  相似文献   

19.
Tetraphenylphosphonium Tetradecachlorotetraarsenate(III), (PPh4)2As4Cl14 The title compound was obtained by reaction of As4S4, PPh4Cl and chlorine in dichloromethane. According to its X-ray crystal structure analysis, the As4Cl ion can be described as an association product of two AsCl4? units and two AsCl3 molecules. The As atoms and ten Cl atoms are approximately in a plane, the remaining four Cl atoms alternately take positions above and below this plane. The As atoms have distorted ψ octahedral coordination.  相似文献   

20.
    
A detailed investigation of the accuracy of different quantum mechanical methods for the study of iron(III) spin crossover complexes is presented. The energy spin state gap between the high and low spin states; ΔE (HS‐LS) of nine iron(III) quinolylsalicylaldiminate complexes were calculated with nine different DFT functionals, then compared. DFT functionals: B3LYP, B3LYP‐D3, B3LYP*, BH&HLYP, BP86, OLYP, OPBE, M06L, and TPSSh were tested with six basis sets: 3‐21G*, dgdzvp, 6‐31G**, cc‐pVDZ, Def2TZVP, and cc‐pVTZ. The cations from the X‐ray crystal structures of [Fe(qsal‐OMe)2]Cl·MeCN·H2O, [Fe(qsal‐OMe)2]Cl·2MeOH·0.5H2O, [Fe(qsal‐OMe)2]BF4·MeOH, [Fe(qsal‐OMe)2]NCS·CH2Cl2, [Fe(qsal‐F)2]NCS, [Fe(qsal‐Cl)2]NCS·MeOH, [Fe(qsal‐Br)2]NCS·MeOH, [Fe(qsal‐I)2]OTf·MeOH, and [Fe(qsal)2]NCS?CH2Cl2 were used as starting structures. The results show that B3LYP, B3LYP‐D3, OLYP, and OPBE with a 6‐31G**, Def2TZVP, and cc‐pVTZ basis set give reasonable results of ΔE (HS‐LS) compared with the experimental data. The enthalpy of [Fe(qsal‐I)2]+ calculated with an OLYP functional and cc‐pVTZ basis set (1.48 kcal/mol) most closely matches the experimental data (1.34 kcal/mol). B3LYP* yields an enthalpy of 5.92 kcal/mol suggesting it may be unsuitable for these Fe(III) complexes, mirroring recent results by Kepp (Inorg . Chem ., 2016, 55 , 2717–2727).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号