首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The structural evolution of the Co3O4 fine powders prepared by rheological phase reaction and pyrolysis method upon different temperature has been investigated using X‐ray diffraction (XRD) topography. The electrochemical performance of Co3O4 electrode materials for Li‐ion batteries is studied in the form of Li/Co3O4 cells. The reversible capacity as high as 930 mAh/g for the Co3O4 sample heat‐treated at 600 °C is achieved and sustained over 30 times charge‐discharge cycles at room temperature. The detailed information concerning the reaction mechanism of Co3O4 active material together with lithium ion is obtained through ex‐situ XRD topography, X‐ray photoelectron spectroscopy (XPS) analysis and cyclic voltammetry (CV) technique. And it is revealed that a “two‐step” reaction is involved in the charge and discharge of the Li/Co3O4 cells, in which Co3O4 active material is reversibly reduced into xCoO(3 ‐ x)CoO and then into metallic Co.  相似文献   

2.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号