首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

2.
Biodegradable poly(ε‐caprolactone) (PCL) scaffolds with adipose‐derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL?1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.  相似文献   

3.
Three dimensional (3D) scaffolds have huge limitations due to their low porosity, mechanical strength, and lack of direct cell-bioactive drug contact. Whereas bisphosphonate drug has the ability to stimulate osteogenesis in osteoblasts and bone marrow mesenchymal stem cells (hMSC) which attracted its therapeutic use. However it is hard administration low bioavailability, and lack of site-specificity, limiting its usage. The proposed scaffold architecture allows cells to access the bioactive surface at their apex by interacting at the scaffold's interfacial layer. The interface of 3D polycaprolactone (PCL) scaffolds has been coated with alendronate-modified hydroxyapatite (MALD) enclosed in a chitosan matrix, to mimic the native environment and stupulate the through interaction of cells to bioactive layer. Where the mechanical strength will be provided by the skeleton of PCL. In the MALD composite's hydroxyapatite (HAP) component will govern alendronate (ALD) release behavior, and HAP presence will drive the increase in local calcium ion concentration increases hMSC proliferation and differentiation. In results, MALD show release of 86.28 ± 0.22. XPS and SEM investigation of the scaffold structure, shows inspiring particle deposition with chitosan over the interface. All scaffolds enhanced cell adhesion, proliferation, and osteocyte differentiation for over a week without in vitro cell toxicity with 3.03 ± 0.2 kPa mechanical strength.  相似文献   

4.
5.
6.
In this paper, we have developed a method to produce poly(lactic- co-glycolic acid) (PLGA) microfibers within a microfluidic chip for the generation of 3D tissue engineering scaffolds. The synthesis of PLGA fibers was achieved by using a polydimethylsiloxane (PDMS)-based microfluidic spinning device in which linear streams of PLGA dissolved in dimethyl sulfoxide (DMSO) were precipitated in a glycerol-containing water solution. By changing the flow rate of PLGA solution from 1 to 50 microL/min with a sheath flow rate of 250 or 1000 microL/min, fibers were formed with diameters that ranged from 20 to 230 microm. The PLGA fibers were comprised of a dense outer surface and a highly porous interior. To evaluate the applicability of PLGA microfibers generated in this process as a cell culture scaffold, L929 fibroblasts were seeded on the PLGA fibers either as-fabricated or coated with fibronectin. L929 fibroblasts showed no significant difference in proliferation on both PLGA microfibers after 5 days of culture. As a test for application as nerve guide, neural progenitor cells were cultured and the neural axons elongated along the PLGA microfibers. Thus our experiments suggest that microfluidic chip-based PLGA microfiber fabrication may be useful for 3D cell culture tissue engineering applications.  相似文献   

7.
Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide‐co‐trimethylene carbonate), poly(LA‐co‐TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt‐leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA‐co‐TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.  相似文献   

8.
The increasing prevalence of end‐stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein‐bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof‐of‐concept for stand‐alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly‐ε‐caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L‐3,4‐dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human‐derived cell model can bridge all fiber‐to‐fiber distances to form a monolayer, whereas small‐sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor‐sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.  相似文献   

9.
Various in vitro culture systems have been used to investigate the pathogenesis of age‐related macular degeneration (AMD). However, many still rely on oversimplified monolayer culture models. AMD is a complex disease, associated with the pathological changes to multiple structural components such as the Bruch's membrane, retinal pigment epithelium (RPE), and choroidal endothelial cells. This study aims to construct a novel 3D coculture model using the polycaprolactone (PCL)‐gelatin electrospun scaffold, with human RPE cells (hRPE) and primate choroidal cells (RF‐6A). Results from this study show that PCL‐gelatin scaffolds have a highly porous ultrastructure that supports the attachment, proliferation, differentiation, and migration of the hRPEs and choroidal endothelial cells. It is also demonstrated that the PCL‐gelatin 3D coculture model may be useful in exploring the molecular interplay between the hPRE and the choroidal endothelial cells, and their effects on growth factor modulation, which may be important in the pathogenesis of AMD.  相似文献   

10.
Composite scaffolds of polymers/β-tricalcium phosphate (TCP) have been widely used for bone regeneration due to the combination of osteoinductivity of TCP and mechanical properties of the polymers. However, the difference in surface properties of the two material causes composite has poor uniformity and weak two-phase interaction, resulting in poor TCP release and weak new bone-forming ability. In this research, a TCP sol was developed to replace traditional TCP nanoparticles for the preparation of homogeneous polycaprolactone (PCL)/TCP sol nanofibrous scaffolds. It was found that compared with TCP nanoparticles, TCP sol homogeneously distributed in PCL nanofibers, and greatly improved the hydrophilicity, biodegradability, and mechanical properties of the scaffolds. It is also confirmed that loading TCP sol promoted the formation of bone-like apatite on the surface of the scaffolds. Biological experiments showed that all scaffolds supported rat bone marrow mesenchymal stem cells (rBMSCs) proliferation, especially scaffolds loaded with TCP sol. The increase in alkaline phosphatase activity and collagen production, enhanced calcium deposition, and up-regulation of osteocalcin expression demonstrated that the loading TCP sol expanded an advantage of scaffolds in promoting rBMSCs osteogenic differentiation, suggesting it dramatically improved the osteoinductive activity of PCL/TCP hybrid system and had a great potential application in bone regeneration.  相似文献   

11.
Mimicking hybrid extracellular matrix is one of the main challenges for bone tissue engineering (BTE). Biocompatible polycaprolactone/poly(α,β)‐DL ‐aspartic acid/collagen nanofibrous scaffolds were fabricated by electrospinning and nanohydroxyapatite (n‐HA) was deposited by calcium phosphate dipping method for BTE. Human mesenchymal stem cells (hMSCs) were cultured on these hybrid scaffolds to investigate the cell proliferation, osteogenic differentiation by alkaline phosphatase activity, mineralization, double immunofluorescent staining using CD90 and expression of osteocalcin. The present study indicated that the PCL/PAA/collagen/n‐HA scaffolds promoted greater osteogenic differentiation of hMSCs, proving to be a potential hybrid scaffolds for BTE.

  相似文献   


12.
The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC‐3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation.  相似文献   

13.
Current therapeutic interventions in bone defects are mainly focused on finding the best bioactive materials for inducing bone regeneration via activating the related intracellular signaling pathways. Integrins are trans‐membrane receptors that facilitate cell‐extracellular matrix (ECM) interactions and activate signal transduction. To develop a suitable platform for supporting human bone marrow mesenchymal stem cells (hBM‐MSCs) differentiation into bone tissue, electrospun poly L‐lactide (PLLA) nanofiber scaffolds were coated with nano‐hydroxyapatite (PLLA/nHa group), gelatin nanoparticles (PLLA/Gel group), and nHa/Gel nanoparticles (PLLA/nHa/Gel group) and their impacts on cell proliferation, expression of osteoblastic biomarkers, and bone differentiation were examined and compared. MTT data showed that proliferation of hBM‐MSCs on PLLA/nHa/Gel scaffolds was significantly higher than other groups (P < .05). Alkaline phosphatase activity was also more increased in hBM‐MSCs cultured under osteogenic media on PLLA/nHa/Gel scaffolds compared to others. Gene expression evaluation confirmed up‐regulation of integrin α2β1 as well as the osteogenic genes BGLAP, COL1A1, and RUNX2. Following use of integrin α2β1 blocker antibody, the protein level of integrin α2β1 in cells seeded on PLLA/nHa/Gel scaffolds was decreased compared to control, which confirmed that most of the integrin receptors were bound to gelatin molecules on scaffolds and could activate the integrin α2β1/ERK axis. Collectively, PLLA/nHa/Gel scaffold is a suitable platform for hBM‐MSCs adhesion, proliferation, and osteogenic differentiation in less time via activating integrin α2β1/ERK axis, and thus it might be applicable in bone tissue engineering.  相似文献   

14.
We described the curcumin‐loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three‐dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(ε‐caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2‐trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross‐linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D‐printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.  相似文献   

15.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   

16.
The injuries and defects in the central nervous system are the causes of disability and death of an affected person. As of now, there are no clinically available methods to enhance neural structural regeneration and functional recovery of nerve injuries. Recently, some experimental studies claimed that the injuries in brain can be repaired by progenitor or neural stem cells located in the neurogenic sites of adult mammalian brain. Various attempts have been made to construct biomimetic physiological microenvironment for neural stem cells to control their ultimate fate. Conductive materials have been considered as one the best choices for nerve regeneration due to the capacity to mimic the microenvironment of stem cells and regulate the alignment, growth, and differentiation of neural stem cells. The review highlights the use of conductive biomaterials, e.g., polypyrrole, polyaniline, poly(3,4‐ethylenedioxythiophene), multi‐walled carbon nanotubes, single‐wall carbon nanotubes, graphene, and graphite oxide, for controlling the neural stem cells activities in terms of proliferation and neuronal differentiation. The effects of conductive biomaterials in axon elongation and synapse formation for optimal repair of central nervous system injuries are also discussed.  相似文献   

17.
Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded β‐glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε‐caprolactone) (PCL)‐based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip‐coating or spin‐coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip‐coated and spin‐coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.  相似文献   

18.
Stem and progenitor cells isolated from the embryonic rat cerebral cortex were immobilized by matrix entrapment in three-dimensional (3D) Type I collagen gels, and cultured in serum-free medium containing basic fibroblast growth factor. The cells trapped within the collagen networks actively proliferated and formed clone-like aggregates. Neurons were the first differentiated cells to appear within the aggregates, followed by generation of astrocytes and oligodendrocytes. In addition, necrotic cores were developed as the aggregate diameter increased and cell viability declined significantly after 3 weeks in culture. To overcome these problems, the cell-collagen constructs were transferred to Rotary Wall Vessel bioreactors for up to 10 weeks. In the rotary culture, the collagen gels compacted 3-4 folds and a long-term growth and differentiation of neural stem and progenitor cells was dynamically maintained. Remarkably, the cell-collagen constructs formed a complex two-layered structure that superficially emulated to a certain extent the cerebral cortex of the embryonic brain in architecture and functionality. The engineered 3D tissue-like constructs displaying characteristic properties of neuronal circuits may have potential use in tissue replacement therapy for injured brain and spinal cord.  相似文献   

19.
A new cell‐printed scaffold consisting of poly(ϵ‐caprolactone) (PCL) and cell‐embedded alginate struts is designed. The PCL and alginate struts are stacked in an interdigitated pattern in successive layers to acquire a three‐dimensional (3D) shape. The hybrid scaffold exhibits a two‐phase structure consisting of cell (MC3T3‐E1)‐laden alginate struts able to support biological activity and PCL struts able to provide controllable mechanical support of the cell‐laden alginate struts. The hybrid scaffolds exhibit an impressive increase in tensile modulus and maximum strength compared to pure alginate scaffolds. Laden cells are homogeneously distributed throughout the alginate struts and the entire scaffold, resulting in cell viability of approximately 84%.  相似文献   

20.
A hybrid technology that combines a three‐dimensional (3‐D) dispensing system with an electrospinning process was used to produce a hierarchical 3‐D scaffold consisting of micro‐sized polycaprolactone (PCL) strands and micro/nano‐sized fibres. The micro/nanofibre biocomposites electrospun with PCL/small intestine submucosa (SIS) and PCL/Silk fibroin were layered between melt‐plotted micro‐strands. The scaffold containing SIS exhibited a stronger hydrophilic property than other scaffolds due to the various hydrophilic components in SIS. The 3‐D hierarchical scaffold having biocomposites exhibited an incredibly enhanced initial cell attachment and proliferation of bone marrow‐derived mesenchymal stem cells relative to the normally designed 3‐D scaffold.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号