共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicole E. Botterhuis D. J. M. van Beek Gaby M. L. van Gemert Anton W. Bosman Rint P. Sijbesma 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):3877-3885
Functionalization of polydimethylsiloxanes (PDMS) polymers with hydrogen‐bonding ureidopyrimidinone (UPy) groups leads to supramolecular thermoplastic elastomers. In previous studies, no lateral stacking of UPy dimers was observed in UPy‐functionalized polymers, unless additional urethane or urea groups were built into the hard block. However, we have shown that when PDMS is used as the soft block, this lateral aggregation of UPy dimers does take place, since long fibers could be observed in the atomic force microscopy (AFM) phase image. Also in bulk, the presence of these interactions was proven by oscillatory shear experiments. We attribute this aggregation to the incompatibility of soft block and hard block, leading to phase separation. Moreover, we have shown that additional urethane or urea groups in the hard block do lead to materials with more fibers and higher melting points. For the UPy‐urea functionalized PDMS even single fibers are observed with AFM when dropcasted from a very diluted solution. When the length of the soft block is increased, the morphology changes from fibrous to spherical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3877–3885, 2008 相似文献
2.
Alberto Concellón Eva Blasco Milagros Piñol Luis Oriol Isabel Díez Cristina Berges Carlos Sánchez‐Somolinos Rafael Alcalá 《Journal of polymer science. Part A, Polymer chemistry》2014,52(22):3173-3184
A new methacrylate containing a 2,6‐diacylaminopyridine (DAP) group was synthesized and polymerized via RAFT polymerization to prepare homopolymethacrylates (PDAP) and diblock copolymers combined with a poly(methyl methacrylate) block (PMMA‐b‐PDAP). These polymers can be easily complexed with azobenzene chromophores having thymine (tAZO) or carboxylic groups with a dendritic structure (dAZO), which can form either three or two hydrogen bonds with the DAP groups, respectively. The supramolecular polymers were characterized by spectroscopic techniques, optical microscopy, TGA, and DSC. The supramolecular polymers and block copolymers with dAZO exhibited mesomorphic properties meanwhile with tAZO are amorphous materials. The response of the supramolecular polymers to irradiation with linearly polarized light was also investigated founding that stable optical anisotropy can be photoinduced in all the materials although higher values of birefringence and dichroism were obtained in polymers containing the dendrimeric chromophore dAZO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3173–3184 相似文献
3.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(16):1844-1852
Reversible addition‐fragmentation chain transfer (RAFT) polymerization produced novel ABA triblock copolymers with associative urea sites within pendant groups in the external hard blocks. The ABA triblock copolymers served as models to study the influence of pendant hydrogen bonding on polymer physical properties and morphology. The triblock copolymers consisted of a soft central block of poly(di(ethylene glycol) methyl ether methacrylate) (polyDEGMEMA, 58 kg/mol) and hard copolymer external blocks of poly(2‐(3‐hexylureido)ethyl methacrylate‐co‐2‐(3‐phenylureido)ethyl methacrylate) (polyUrMA, 18‐116 kg/mol). Copolymerization of 2‐(3‐hexylureido)ethyl methacrylate (HUrMA) and 2‐(3‐phenylureido)ethyl methacrylate (PhUrMA) imparted tunable hard block Tg's from 69 to 134 °C. Tunable hard block Tg's afforded versatile thermomechanical properties for diverse applications. Dynamic mechanical analysis (DMA) of the triblock copolymers exhibited high modulus plateau regions (∼100 MPa) over a wide temperature range (−10 to 90 °C), which was indicative of microphase separation. Atomic force microscopy (AFM) confirmed surface microphase separation with various morphologies. Variable temperature FTIR (VT‐FTIR) revealed the presence of both monodentate and bidentate hydrogen bonding, and pendant hydrogen bonding remained as an ordered structure to higher than expected temperatures. This study presents a fundamental understanding of the influence of hydrogen bonding on polymer physical properties and reveals the response of pendant urea hydrogen bonding as a function of temperature as compared to main chain polyureas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1844–1852 相似文献
4.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(9):1003-1011
To study light‐triggered self‐healing in supramolecular materials, we synthesized supramolecular thermoplastic elastomers with mechanical properties that were reversibly modulated with temperature. By changing the supramolecular architecture, we created polymers with different temperature responses. Detailed characterization of the hydrogen‐bonding material revealed dramatically different temperature and mechanical stress response due to two different stable states with changes in the hydrogen bonding interactions. A semi‐crystalline state showed no response to oscillatory shear deformations while the melt state behaved as a typical energy dissipative material with a clear crossover between storage and loss moduli. Comparison studies on heat generation after light excitation revealed no differences in photo‐thermal conversion when an Fe(II)‐phenanthroline chromophore was either physically blended into the H‐bonding polymer or covalently attached to the supramolecular network. These materials showed healing of scratches with light‐irradiation, as long as the overlap of material absorbance and laser excitation was sufficient. Differences in the efficiency and rate of photohealing were observed, depending on the type of supramolecular interaction, and these were attributed to the differences in the thermal response of the materials' moduli. Such results provide insight into how materials can be designed with chromophores and supramolecular bonding interactions to tune the light‐healing efficiency of the materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1003–1011 相似文献
5.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.
6.
Jesús del Barrio Eva Blasco Luis Oriol Rafael Alcalá Carlos Sánchez‐Somolinos 《Journal of polymer science. Part A, Polymer chemistry》2013,51(8):1716-1725
We have demonstrated the preparation of a series of photoaddressable supramolecular block copolymers by mixing a carboxy‐terminated azobenzene derivative, 6‐[4‐(4′‐cyanophenylazo)phenyloxy]hexanoic acid (AZO), and two polystyrene‐b‐poly(4‐vinylpiridine) (PS‐b‐P4VP) block copolymers. AZO can be selectively attached to the P4VP block of PS‐b‐P4VP through hydrogen bonding interactions. The assembly of AZO with vinylpyridine group‐containing polymers was initially investigated on a model system composed of P4VP homopolymer and AZO. Homogeneous liquid crystalline materials were obtained for ratios of AZO to vinylpyridine repeating unit, x, lower or equal to 0.50. Mixtures with higher x resulted in heterogeneous materials showing clear macrophase separation. Accordingly, a series of hydrogen‐bonded complexes of PS‐b‐P4VP and AZO, PS‐b‐P4VP(AZO)x, with x = 0.25 and x = 0.50 were prepared. Lamellar and spherical morphologies were observed for the complexes based on PS24‐b‐P4VP9.5 (Mn,PS = 24,000, Mn,P4VP = 9500) and PS24‐b‐P4VP1.9 (Mn,PS = 24,000, Mn,P4VP = 1900), respectively. Photoinduced orientation of the azobenzene units was obtained in films of P4VP(AZO)x and PS‐b‐P4VP(AZO)x with x = 0.25 and 0.50 by using 488 nm linearly polarized light and characterized through birefringence and dichroism measurements. This investigation shows a versatile and less laborious approach to azobenzene‐containing polymer materials with low chromophore content, of interest in optical application. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
7.
Ikeda M Nobori T Schmutz M Lehn JM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(2):662-668
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization. 相似文献
8.
Rudy J. Wojtecki Alshakim Nelson 《Journal of polymer science. Part A, Polymer chemistry》2016,54(4):457-472
For biological polymers like DNA and proteins, supramolecular interactions dictate the folding and assembly of the polymer chains. Advances in synthetic polymer chemistry enable the synthesis of polymers of defined length and composition, but the field has yet to reach the same level of sophistication as nature's polymers. However, the incorporation of just a few supramolecular interactions into a synthetic polymer chain can drastically change the manner in which the polymer assembles and interacts, thereby altering the properties of a polymeric material. This highlight will focus on approaches wherein a low‐density of supramolecular functionalities (<10 wt %) were used per polymer chain. How the selection of the appropriate supramolecular functionality (based on the directionality and strength of the interaction), along with the location of these groups on a polymer chain, can afford a spectrum of material properties has been highlighted. At one end, the supramolecular motif can dramatically alter the elasticity of a material, and at the other, the motif can have a more subtle effect like increasing the stability of a micelle. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 457–472 相似文献
9.
10.
Kyung Ju Lee Yong Woo Kim Joo Hwan Koh Jong Hak Kim 《Journal of Polymer Science.Polymer Physics》2007,45(23):3181-3188
A supramolecular material containing quadruple hydrogen bonding sites was prepared by reacting the amines of methyl isocytosine and the epoxy groups of poly (ethylene glycol diglycidyl ether). This supramolecular polymer was complexed with metal salt, that is potassium iodide, to produce polymer electrolytes, and their physical properties, specific interactions, and conductivity behavior were investigated. The ionic conductivity of polymer electrolytes continuously increased with increasing salt concentration up to 0.4 of salt weight fraction, presenting usually high solubility limit of salt in the supramolecular polymer. Wide angle X‐ray scattering data also presented that the metal salt was completely dissolved in the supramolecular polymer up to 0.4 of salt weight fraction. Upon the introduction of metal salt, the mechanical properties of the supramolecular polymer were significantly enhanced by around 10 times and the glass transition temperature of the polymer increased by about 50 °C, as revealed by complex melt viscosities and differential scanning calorimetry. These unusual behaviors of salt solubility and mechanical properties for supramolecular polymer/metal salt complexes were attributed to the strong, additional metal ion coordination to hydrogen bonding sites as well as ether oxygens of polymer matrix, as supported by FTIR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3181–3188, 2007 相似文献
11.
Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications. 相似文献
12.
Peng Zhang Jeffrey S. Moore 《Journal of polymer science. Part A, Polymer chemistry》2000,38(1):207-219
Poly(ethylethylene‐b‐ethylene oxide) (PEE‐PEO) diblock copolymers with pyridine‐benzoic acid end‐groups for heterodimeric hydrogen bonding were designed as a possible means to noncentrosymmetric organizations by spontaneous self‐assembly. These end‐functionalized polymers were synthesized by anionic living polymerization with protected initiator and terminating reagents. A series of polymeric intermediates with different end‐groups was characterized by proton nuclear magnetic resonance, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and gel permeation chromatography. Preliminary studies of solid‐state organization by differential scanning calorimetry and small‐angle X‐ray scattering provided evidence for a long‐range order that was sensitive to chain length, copolymer composition, and end‐group structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 207–219, 2000 相似文献
13.
Balamurugan V Hundal MS Mukherjee R 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(7):1683-1690
Using a group of six neutral M(II)Cl(2)-containing coordination compounds as building blocks, the first systematic investigation of C-H...Cl hydrogen-bonding interactions was performed. Single-crystal X-ray structural analyses of four new compounds (pseudo-tetrahedral Co(II) and Zn(II); distorted trigonal bipyramidal Zn(II)) authenticate the metal coordination geometry. To provide a unified view of the presence of noncovalent interactions in this class of compounds, we have re-examined the packing diagram of two previously reported compounds (a distorted square-pyramidal Cu(II) complex and a trans-octahedral Co(II) complex). The organic ligands of our choice comprise bidentate/tridentate pyrazolylmethylpyridines and an unsymmetrical tridentate pyridylalkylamine. This systematic investigation has allowed us to demonstrate the existence of versatile C-H...Cl(2)M interactions and to report the successful application of such units as inorganic supramolecular synthons. Additional noncovalent interactions such as C-H...O and O-H...Cl hydrogen bonding and pi-pi stacking interactions have also been identified. Formation of novel supramolecular architectures has been revealed: 2D lamellar (p-cyclophane) and 3D lamellar, 3D "stitched staircase" (due to additional hydrogen-bonding interactions by water tetramers, with an average O-O bond length in the tetramer unit of 2.926 A, acting as "molecular clips" between staircases), 3D linked ladder, and single-stranded 1D helix. 相似文献
14.
Xiaoyan Yang Monte S. Bedford Wang Wan Catherine A. Conrad Emily F. Colter Emily H. Freeman Clayton Wilson Longyu Hu George Chumanov Kristi J. Whitehead Rhett C. Smith 《Journal of polymer science. Part A, Polymer chemistry》2019,57(1):24-34
The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity against Staphylococcus aureus and Escherichia coli was assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 24–34 相似文献
15.
Nojin Park Myungeun Seo Sang Youl Kim 《Journal of polymer science. Part A, Polymer chemistry》2012,50(21):4408-4414
Novel triblock copolymers having self‐complementary hydrogen‐bonding units were synthesized by using reversible addition–fragmentation transfer polymerization. As characterized by dynamic light scattering and atomic force microscopy, these polymers formed noncovalently crosslinked polymer particles and showed an aggregation behavior by intermolecular and intramolecular interactions. At low concentration, polymers formed nanoparticles, and the particle diameter increased with increasing polymer concentration. Well‐ordered hexagonal microstructures were prepared by “Breath Figure” technique with the triblock copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
16.
Dan Liu Steven Kyriakides Scott W. Case John J. Lesko Yanxiang Li James E. McGrath 《Journal of Polymer Science.Polymer Physics》2006,44(10):1453-1465
The tensile stress–strain behavior of Nafion 117 and sulfonated poly(arylene ether sulfone) copolymer (BPSH35) membranes were explored with respect to the effects of the strain rate, counterion type, molecular weight, and presence of inorganic fillers. The yielding properties of the two films were most affected by the change in the strain rate. The stress–strain curves of Nafion films in acid and salt forms exhibited larger deviations at strains above the yield strain. As the molecular weight of the BPSH35 samples increased, the elongation at break improved significantly. Enhanced mechanical properties were observed for the composite membrane of BPSH35 and zirconium phenylphosphonate (2% w/w) in comparison with its matrix BPSH35 film. The stress‐relaxation behavior of Nafion and BPSH35 membranes was measured at different strain levels and different strain rates. Master curves were constructed in terms of plots of the stress‐relaxation modulus and time on a double‐logarithm scale. A three‐dimensional bundle‐cluster model was proposed to interpret these observations, combining the concepts of elongated polymer aggregates, proton‐conduction channels, and states of water. The rationale focused on the polymer bundle rotation/interphase chain readjustment before yielding and polymer aggregate disentanglements and reorientation after yielding. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1453–1465, 2006 相似文献
17.
18.
Bouchmella K Boury B Dutremez SG van der Lee A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(21):6130-6138
The structural characterization of molecular assemblies constructed from imidazolyl-containing haloalkenes and haloalkynes is reported. 1-(3-Iodopropargyl)imidazole (2) and 1-(2,3,3-triiodoallyl)imidazole (5) were synthesized from 1-propargylimidazole (1). In the solid state, these wholly organic modules self-assemble through N...I halogen-bonding interactions, thus giving rise to polymeric chains. The N...I interaction observed in 2 (d(N...I)=2.717 A, angle-spherical C(sp)-I...N=175.8 degrees) is quite strong relative to previously reported data. The N...I interaction in 5 (d(N...I)=2.901 A, angle-spherical C(sp2)-I...N=173.6 degrees) is weaker, in accordance with the order C(sp)-X<--base>C(sp2)-X<--base. Compound 5 was found to give a 1:1 cocrystal 4 with morpholinium iodide (6). In the X-ray crystal studies of 4, N...I halogen-bonding interactions similar to those observed in 5 were shown not to be present, as the arrangement of the molecules is governed by two interwoven hydrogen-bonding networks. The first network involves N-H...O interactions between nearby morpholinium cations, and the second network is based on N-H...N hydrogen bonding between morpholinium cations and imidazolyl groups. Both hydrogen-bonding schemes are charge-assisted. Halogen bonding is not completely wiped out, however, as the triiodoalkene fragment forms a halogen bond with an iodide anion in its vicinity (d(I...I)=3.470 A, angle-spherical C(sp2)-I...I=170.7 degrees). X-ray crystal studies of 6 show a completely different arrangement from that observed in 4, namely, N-H...O interactions are not present. In crystalline 6, morpholinium cations are interconnected through C-H...O bridges (d(H...O)=2.521 and 2.676 A), and the NH2+ groups interact with nearby iodide anions (d(H...I)=2.633 and 2.698 A). 相似文献
19.
Mingjian Yuan Andrew H. Rice Christine K. Luscombe 《Journal of polymer science. Part A, Polymer chemistry》2011,49(3):701-711
The synthesis of four alternating copolymers using benzo[2,1‐b;3,4‐b′]dithiophene (BDP) as the common donor unit is presented. Before the synthesis, theoretical calculations that we performed predicted that the incorporation of BDP, which consists of fused dithiophene units with a benzene ring, into these polymers would produce a low‐lying highest occupied molecular orbital (HOMO) energy level. Low‐lying HOMO levels are desirable to produce high open circuit voltages (VOC) in organic bulk heterojunction (BHJ) photovoltaic devices. The polymers' structural characterization, as well as the preliminary results of their performance in BHJ devices, using (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The initial power conversion efficiency achieved in these unoptimized devices was 1.11% because of relatively low JSC values. The variation observed in the JSC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
20.
Vitali Vogel Jean‐Franois Gohy Bas G. G. Lohmeijer Jacomina A. Van Den Broek Winfried Haase Ulrich S. Schubert Dieter Schubert 《Journal of polymer science. Part A, Polymer chemistry》2003,41(20):3159-3168
In aqueous solutions, amphiphilic block copolymers in which a polystyrene (PS) segment is connected to a poly(ethylene oxide) (PEO) block via a bis(2,2′:6′,2″‐ terpyridine ruthenium) complex can form micelles. Such micelles of the protomer type PS20‐[Ru]‐PEO70, according to the preparation procedure representing frozen micelles, were studied by sedimentation velocity and sedimentation equilibrium analysis in an analytical ultracentrifuge and by transmission electron microscopy, with different techniques applied for the sample preparation. The particles obtained were surprisingly multifarious in size. In ultracentrifugation experiments performed at relatively low salt concentrations, the distributions of the sedimentation coefficient s20,w showed a pronounced peak at 9.6 S and a broad, only partly separated second peak around 14 S. The molar mass of the particles at the peak was around 430,000 g/mol, corresponding to an aggregation number of approximately 85. The average hydrodynamic diameter of the particles in the peak fraction was approximately 13 nm. In electron micrographs of negatively stained samples, spheres of diameters between 10 and 25 nm were the most abundant particles, but larger ones with a wide size range were also visible. The latter particles apparently were composed of smaller ones. The data from both sedimentation analysis and electron microscopy showed that (1) the studied compound formed primary micelles of diameters around 20 nm and (2) the primary micelles had a tendency toward aggregation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3159–3168, 2003 相似文献