首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《化学:亚洲杂志》2017,12(22):2962-2966
An assembly was fabricated and was revealed to be a multiple‐stimulus‐responsive biomimetic hybrid polymer architecture. It was constructed by the hydrophobic interactions between a conjugated polyfluorene that contained 2,1,3‐benzothiadiazole units (PFBT) and a tri(ethylene glycol)‐functionalized polyisocyanopeptide (3OEG‐PIC). The introduction of PFBT to the polyisocyanopeptide (PIC) network allowed for the incorporation of responsiveness to multiple stimuli including temperature, CO2, carbonic anhydrase, and nonlinear mechanics, which mimics natural processes and interactions. Furthermore, the light‐harvesting and signal amplification characteristics of PFBT endowed the supramolecular assembly with the essential function of fluorescence monitoring for biological processes.  相似文献   

2.
Two‐component systems capable of self‐assembling into soft gel‐phase materials are of considerable interest due to their tunability and versatility. This paper investigates two‐component gels based on a combination of a L ‐lysine‐based dendron and a rigid diamine spacer (1,4‐diaminobenzene or 1,4‐diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular‐scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the “solid‐like” gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the “liquid‐like” phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two‐component gels assembled in a component‐selective manner, with the dendron preferentially recognising 1,4diaminobenzene (>70 %), when similar competitor diamines (1,2‐ and 1,3‐diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based on 1,4‐diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based on 1,4‐diaminocyclohexane, indicative of controlled and selective π–π interactions within a three‐component assembly. As such, the results in this paper demonstrate how component selection processes in two‐component gel systems can control hierarchical self‐assembly.  相似文献   

3.
Linear π‐conjugated oligomers are known to form organogels through noncovalent interactions. Herein, we report the effect of π‐repeat units on the gelation and morphological properties of three different oligo(p‐phenylene‐ethynylene)s: OPE3 , OPE5 , and OPE7 . All of these molecules form fluorescent gels in nonpolar solvents at low critical gel concentrations, thereby resulting in a blue gel for OPE3 , a green gel for OPE5 , and a greenish yellow gel for OPE7 . The molecule–molecule and molecule–substrate interactions in these OPEs are strongly influenced by the conjugation length of the molecules. Silicon wafer suppresses substrate–molecule interactions whereas a mica surface facilitates such interactions. At lower concentrations, OPE3 formed vesicular assemblies and OPE5 gave entangled fibers, whereas OPE7 resulted in spiral assemblies on a mica surface. At higher concentrations, OPE3 and OPE5 resulted in super‐bundles of fibers and flowerlike short‐fiber agglomerates when different conditions were applied. The number of polymorphic structures increases on increasing the conjugation length, as seen in the case of OPE7 with n=5, which resulted in a variety of exotic structures, the formation of which could be controlled by varying the substrate, concentration, and humidity.  相似文献   

4.
The biomolecule‐assisted self‐assembly of semiconductive molecules has been developed recently for the formation of potential bio‐based functional materials. Oligopeptide‐assisted self‐assembly of oligothiophene through weak intermolecular interactions was investigated; specifically the self‐assembly and chirality‐transfer behavior of achiral oligothiophenes in the presence of an oligopeptide with a strong tendency to form β‐sheets. Two kinds of oligothiophenes without (QT) or with (QTDA) carboxylic groups were selected to explore the effect of the end functional group on self‐assembly and chirality transfer. In both cases, organogels were formed. However, the assembly behavior of QT was quite different from that of QTDA. It was found that QT formed an organogel with the oligopeptide and co‐assembled into chiral nanostructures. Conversely, although QTDA also formed a gel with the oligopeptide, it has a strong tendency to self‐assemble independently. However, during the formation of the xerogel, the chirality of the oligopeptide can also be transferred to the QTDA assemblies. Different assembly models were proposed to explain the assembly behavior.  相似文献   

5.
6.
The compositions and the multi phase structures of bio‐nanocomposite hydrogels made from silicate cross‐linked PEO and chitosan are related to some of their physical and biological properties. The gels are injectable and self‐healing because the cross‐linking is physical and reversible under deformation. The presence of chitosan aggregates affects the viscoelastic properties and reinforces the hydrogel network. The chitosan adds advantageous properties to the hydrogel such as enhanced cell spreading and adhesion. In vitro biocompatibility data indicate that NIH 3T3 fibroblasts grow and proliferate on the bio‐nanocomposite hydrogel as well as on hydrogel films.

  相似文献   


7.
8.
Hydrophobic collapse plays crucial roles in protein functions, from accessing the complex three‐dimensional structures of native enzymes to the dynamic polymerization of non‐equilibrium microtubules. However, hydrophobic collapse can also lead to the thermodynamically downhill aggregation of aberrant proteins, which has interestingly led to the development of a unique class of soft nanomaterials. There remain critical gaps in the understanding of the mechanisms of how hydrophobic collapse can regulate such aggregation. Demonstrated herein is a methodology for non‐equilibrium amyloid polymerization through mutations of the core sequence of Aβ peptides by a thermodynamically activated moiety. An out of equilibrium state is realized because of the negative feedback from the transiently formed cross‐β amyloid networks. Such non‐equilibrium amyloid nanostructures were utilized to access temporal control over its electronic properties.  相似文献   

9.
10.
A novel approach to assemble multilayer films of Pt nanoparticle/multiwalled carbon nanotube (MWNTs) composites on Au substrate has been developed for the purpose of improving the methanol oxidation efficiency by providing high catalytic surface area. MWNTs were firstly functionalized with 4‐mercaptobenzene and then assembled on an Au substrate electrode. Pt nanoparticles were fabricated and attached to the surface of the functionalized MWNTs subsequently. Thus a layer of Pt/MWNT composites were assembled on the Au substrate electrode. Repeating above process can assemble different layers of film of Pt/MWNTs composites on the Au electrode. Cyclic voltammetry shows that the Au electrode modified with two layers of film of Pt/MWNT composites exhibits high catalytic ability and long‐term stability for methanol oxidation. The layer‐by‐layer self‐assembly technique provides an efficient strategy to construct complex nanostructure for improving the methanol oxidation efficiency by providing high catalytic surface area.  相似文献   

11.
Catalyst‐assisted self‐assembly is widespread in nature to achieve spatial control over structure formation. Reported herein is the formation of hydrogel micropatterns on catalytic surfaces. Gelator precursors react on catalytic sites to form building blocks which can self‐assemble into nanofibers. The resulting structures preferentially grow where the catalyst is present. Not only is a first level of organization, allowing the construction of hydrogel micropatterns, achieved but a second level of organization is observed among fibers. Indeed, fibers grow with their main axis perpendicular to the substrate. This feature is directly linked to a unique mechanism of fiber formation for a synthetic system. Building blocks are added to fibers in a confined space at the solid–liquid interface.  相似文献   

12.
《化学:亚洲杂志》2018,13(16):2014-2018
In π‐conjugated polymers (πCPs), crystallinity and fluorescence typically exhibit a trade‐off relationship. Here, we have synthesized a highly crystalline and fluorescent π‐conjugated polymer with a simple alternating structure of 1,2,4,5‐tetrafluorophenylene and 3,3′‐dihexyl‐2,2′‐bithiophene units. In film, the polymer exhibited efficient red‐colored fluorescence, an improved quantum yield (Φsol=13 %→Φfilm=23 %) and a crystalline structure. Interestingly, supramolecular gel formation occurred in appropriate solvents, and the macrostructure and fluorescence properties of the gel could be directly controlled by the choice of the solvent. The polymer self‐assembled into a spherical form that exhibited red fluorescence in non‐aromatic solvent (1,2‐dichloroethane) and into a fibrous form that exhibited yellow fluorescence in aromatic solvent (mesitylene).  相似文献   

13.
This paper describes the spontaneous vesicular assembly of a naphthalene–diimide (NDI)‐based non‐ionic bolaamphiphile in aqueous medium by using the synergistic effects of π‐stacking and hydrogen bonding. Site isolation of the hydrogen‐bonding functionality (hydrazide), a strategy that has been adopted so elegantly in nature, has been executed in this system to protect these moieties from the bulk water so that the distinct role of hydrogen bonding in the self‐assembly of hydrazide‐functionalized NDI building blocks could be realized, even in aqueous solution. Furthermore, the electron‐deficient NDI‐based bolaamphiphile could engage in donor–acceptor (D–A) charge‐transfer (CT) interactions with a water‐insoluble electron‐rich pyrene donor by virtue of intercalation of the latter chromophore in between two NDI building blocks. Remarkably, even when pyrene was located between two NDI blocks, intermolecular hydrogen‐bonding networks between the NDI‐linked hydrazide groups could be retained. However, time‐dependent AFM studies revealed that the radius of curvature of the alternately stacked D–A assembly increased significantly, thereby leading to intervesicular fusion, which eventually resulted in rupturing of the membrane to form 1D fibers. Such 2D‐to‐1D morphological transition produced CT‐mediated hydrogels at relatively higher concentrations. Instead of pyrene, when a water‐soluble carboxylate‐functionalized pyrene derivative was used as the intercalator, non‐covalent tunable in‐situ surface‐functionalization could be achieved, as evidenced by the zeta‐potential measurements.  相似文献   

14.
The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color‐encoded IPC fibers were also obtained based on the co‐assembly of DNA, histone proteins, and blue‐, green‐, or red‐ (RGB‐) emissive CCPs by tuning the fluorescence resonance energy‐transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP‐coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi‐colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.  相似文献   

15.
A UV‐induced 1,3‐dipolar nucleophilic addition of tetrazoles to thiols is described. Under UV irradiation the reaction proceeds rapidly at room temperature, with high yields, without a catalyst, and in both polar protic and aprotic solvents, including water. This UV‐induced tetrazole‐thiol reaction was successfully applied for the synthesis of small molecules, protein modification, and rapid and facile polymer–polymer conjugation. The reaction has also been demonstrated for the formation of micropatterns by site‐selective surface functionalization. Superhydrophobic–hydrophilic micropatterns were successfully created by sequential modifications of a tetrazole‐modified porous polymer surface with hydrophobic and hydrophilic thiols. A biotin‐functionalized surface could be fabricated in aqueous solutions under long‐wavelength UV irradiation.  相似文献   

16.
Herein, we report the water‐regulated supramolecular self‐assembly structure transformation and the predictability of the gelation ability based on an azobenzene derivative bearing a hydrazide group, namely, N‐(3,4,5‐tributoxyphenyl)‐N′‐4‐[(4‐hydroxyphenyl)azophenyl] benzohydrazide (BNB‐t4). The regulation effects are demonstrated in the morphological transformation from spherical to lamellar particles then back to spherical in different solvent ratios of n‐propanol/water. The self‐assembly behavior of BNB‐t4 was characterized by minimum gelation concentration, microstructure, thermal, and mechanical stabilities. From the spectroscopy studies, it is suggested that gel formation of BNB‐t4 is mainly driven by intermolecular hydrogen bonding, accompanied with the contribution from π–π stacking as well as hydrophobic interactions. The successfully established correlation between the self‐assembly behavior and solubility parameters yields a facile way to predict the gelation performance of other molecules in other single or mixed solvents.  相似文献   

17.
18.
The covalent linking of molecular building blocks on surfaces enables the construction of specific molecular nanostructures of well‐defined shape. Molecular nodes linked to various entities play a key role in such networks, but represent a particular challenge because they require a well‐defined arrangement of different building blocks. Herein, we describe the construction of a chemically and geometrically well defined covalent architecture made of one central node and three molecular wires arranged in a nonsymmetrical way and thus encoding different conjugation pathways. Very different architectures of either very limited or rather extended size were obtained depending on the building blocks used for the covalent linking process on the Au(111) surface. Electrical measurements were carried out by pulling individual molecular nodes with the tip of a scanning tunneling microscope. The results of this challenging procedure indicate subtle differences if the nodes are contacted at inequivalent termini.  相似文献   

19.
Self‐assembly of the amphiphilic π‐conjugated carbenium ion ATOTA‐1+ in aqueous solution selectively leads to discrete and highly stable nanotubes or nanoribbons and nanorods, depending on the nature of the counterion (Cl? vs. PF6?, respectively). The nanotubes formed by the Cl? salt illustrate an exceptional example of a structural well‐defined (29±2 nm in outer diameter) unilamellar tubular morphology featuring π‐conjugated functionality and high stability and flexibility, in aqueous solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号