首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

2.
UVA irradiation is known to cause photoaging via production of reactive oxygen species (ROS) and activation of inflammatory processes. Previously, we have demonstrated that baicalin, a plant‐derived flavonoid possessing both antioxidant and anti‐inflammatory activity, protects mouse keratinocytes against damage from UVB irradiation. However, the role of baicalin in vivo has not been well studied, particularly in the setting of UVA irradiation. To explore the protective effects and mechanisms of baicalin treatment in mice after UVA irradiation, mice were exposed to acute and chronic doses of UVA irradiation with or without baicalin or vehicle. Skin samples were collected for histological staining, RNA isolation, flow cytometry and protein extraction. Our results demonstrate the protective effect of baicalin against UVA‐induced oxidative damage and inflammation in mouse skin. These effects are likely mediated via the TLR4 pathway, which may serve as a target for photochemoprevention against skin inflammation.  相似文献   

3.
High levels of ultraviolet‐B (UVB) radiation can negatively affect aquatic animals. Macrobrachium olfersi is a prawn that lives in clear freshwaters and during the breeding season, females carry eggs in an external brood pouch. Therefore, we hypothesize that eggs are also exposed to environmental UVB radiation. The aim of this study was to investigate whether UVB radiation induces DNA damage and compromises cell cycle in embryos of M. olfersi. In laboratory, UVB irradiance (310 mW. cm?2) that embryos receive in the natural environment was simulated. After irradiation, embryos were kept under different light conditions in order to recognize the presence of cell repair. UVB radiation induces DNA damage, specifically thymine dimers. After 48 h of UVB exposure, a significant decrease in the level of these dimers was observed in embryos kept under visible light while it remained constant in the dark. Moreover, under visible light and darkness, a decrease in proliferation was observed after 48 h of irradiation. An increase in PCNA expression and decrease in p53 expression were observed after, respectively, 1 and 48 h of exposure. Our results showed that UVB radiation disturbs the cell cycle and induces DNA damage in M. olfersi embryos. However, under visible light these embryos showed successful DNA repair.  相似文献   

4.
This study aimed to evaluate the protective effect of artocarpin‐enriched (Artocarpus altilis) heartwood extract on the mechanical properties of UVB‐irradiated fibroblasts. Human skin fibroblasts were pretreated with 50 μg/mL?1 extract and later irradiated with UVB (200 mJ/cm?2). They were then cultured within three‐dimensional of free‐floating and tense collagen lattices. The pretreatment of fibroblasts with the extract prior to UVB radiation showed cells protection against UVB‐induced suppression of α‐SMA expression, fibroblast migration and contraction. These results reveal that the extract prevents mechanical damages induced by UVB irradiation in fibroblast‐embedded collagen lattices, and therefore, has a potential as a natural photo‐protectant.  相似文献   

5.
Ultraviolet‐A light (UVA)‐induced DNA damage and repair in red blood cells to investigate the sensitivity of African catfish to UVA exposure is reported. Fishes were irradiated with various doses of UVA light (15, 30, and 60 min day−1 for 3 days). Morphological and nuclear abnormalities in red blood cells were observed in the fish exposed to UVA compared with controls. Morphological alterations such as acanthocytes, crenated cells, swollen cells, teardrop‐like cells, hemolyzed cells, and sickle cells were observed. Those alterations were increased after 24 h exposure to UVA light and decreased at 14 days after exposure. The percentage of apoptosis was higher in red blood cells exposed to higher doses of UVA light. No micronuclei were detected, but small nuclear abnormalities such as deformed and eccentric nuclei were observed in some groups. We concluded that exposure to UVA light induced DNA damage, apoptosis, and morphological alterations in red blood cells in catfish; however, catfish were found to be less sensitive to UVA light than wild‐type medaka.  相似文献   

6.
Herba Ecliptae (HE) is a typical Chinese herbal medicine used in China for 1500 years. In the study, HE was extracted by various solvents to prepare five HE extracts. They were observed to possess a protective effect against ×OH‐induced DNA damage, and scavenging effects on ×OH radical, ×O2? radical, DPPH×(1,1‐diphenyl‐2‐picrylhydrazyl) radical, and ABTS×+ (2,2′‐azino‐bis(3‐ethyl‐benzothiazoline‐6‐sulfonic acid) radical, and reduce Cu2+ ion. The contents of total phenolics and wedelolactone in five extracts were determined respectively using Folin‐Ciocalteu method and HPLC method. To identify which chemical component can be responsible for its effects, the correlation graphs between chemical contents and antioxidant abilities (1/IC50 values) were plotted to calculate correlation coefficients (R values). Finally, MTT assay revealed that two HE extracts could effectively protect mesenchymal stem cells (MSCs) against ×OH‐induced damage at 3‐30 μg/mL. On the basis of mechanistic analysis, we concluded that: (i) HE can effectively protect against ×OH‐induced damages to DNA and MSCs, thereby HE may have a therapeutic potential in MSCs transplantation or prevention of many diseases; (ii) the effects can be mainly attributed to total phenolics (R = 0.678) especially wedelolactone (R = 0.618); (iii) they exert antioxidant action via hydrogen atom transfer (HAT) and sequential electron proton transfer (SEPT) mechanisms.  相似文献   

7.
Excessive reactive oxygen species (ROS) can oxidatively damage DNA to cause severe biological consequences. In the study, a natural flavonoid, myricitrin (myricetin‐3‐O‐α‐L‐rhamnopyranoside), was found to have a protective effect against hydroxyl‐induced DNA damage (IC50 159.86 ± 54.24 μg/mL). To investigate the mechanism, it was determined by various antioxidant assays. The results revealed that myricitrin could effectively scavenge ·OH, ·O2?, DPPH· (1,1‐diphenyl‐2‐picrylhydrazyl radical), and ABTS+· (2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals (IC50 values were respectively 69.71 ± 5.93, 69.71 ± 5.93, 25.34 ± 2.14, and 1.71 ± 0.09 μg/mL), and bind Cu2+ (IC50 27.33 ± 2.36 μg/mL). Based on the mechanistic analysis, it can be concluded that: (i) myricitrin can effectively protect against hydroxyl‐induced DNA oxidative damage via ROS scavenging and deoxynucleotide radicals repairing approaches. Both approaches can be attributed to its antioxidant. From a structure‐activity relationship viewpoint, its antioxidant ability can be attributed to the ortho‐dihydroxyl moiety, and ultimately to the stability of its oxidized form ortho‐benzoquinone; (ii) its ROS scavenging is mediated via metal‐chelating, and direct radical‐scavenging which is through donating hydrogen (H·) and electron (e); and (iii) its protective effect against DNA oxidative damage may be primarily responsible for the pharmacological effects, and offers promise as a new therapeutic reagent for diseases from DNA oxidative damage.  相似文献   

8.
In this study, we investigated the protective effects of a peptide (YGDEY, Tyr‐Gly‐Asp‐Glu‐Tyr) isolated from tilapia skin gelatin hydrolysates (TGHs), against UVB‐induced photoaging in human keratinocytes (HaCaT) cells. Results showed that YGDEY significantly decreased levels of intracellular reactive oxygen species (ROS), increased antioxidant factors (Superoxide Dismutase, SOD and Glutathione, GSH) expression and maintained balance between GSH and GSSG in HaCaT cells. Comet assay shows that YGDEY can protect DNA from oxidative damage. Furthermore, it significantly inhibited MMP‐1 (collagenase) and MMP‐9 (gelatinase) expression and increased Type I procollagen production. In addition, the molecular docking study showed that YGDEY may form active sites with MMP‐1 and MMP‐9. Moreover, Western blot analysis was utilized to measure the protein levels of UVB‐induced mitogen‐activated protein kinase (MAPK) and nuclear factor‐kappa B (NF‐κB) signaling pathways. Therefore, these results suggested that YGDEY has a therapeutic effectiveness in prevention of UVB‐induced cellular damage, and it is a candidate worthy of being developed as a potential natural antioxidant and food additive.  相似文献   

9.
Styrene radical polymerizations mediated by the imidazolidinone nitroxides 2,5‐bis(spirocyclohexyl)‐3‐methylimidazolidin‐4‐one‐1‐oxyl (NO88Me) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) were investigated. Polymeric alkoxyamine (PS‐NO88Bn)‐initiated systems exhibited controlled/living characteristics at 100–120 °C but not at 80 °C. All systems exhibited rates of polymerization similar to those of thermal polymerization, with the exception of the PS‐NO88Bn system at 80 °C, which polymerized twice as quickly. The dissociation rate constants (kd) for the PS‐NO88Me and PS‐NO88Bn coupling products were determined by electron spin resonance at 50–100 °C. The equilibrium constants were estimated to be 9.01 × 10?11 and 6.47 × 10?11 mol L?1 at 120 °C for NO88Me and NO88Bn, respectively, resulting in the combination rate constants (kc) 2.77 × 106 (NO88Me) and 2.07 × 106 L mol?1 s?1 (NO88Bn). The similar polymerization results and kinetic parameters for NO88Me and NO88Bn indicated the absence of any 3‐N‐transannular effect by the benzyl substituent relative to the methyl substituent. The values of kd and kc were 4–8 and 25–33 times lower, respectively, than the reported values for PS‐TEMPO at 120 °C, indicating that the 2,5‐spirodicyclohexyl rings have a more profound effect on the combination reaction rather than the dissociation reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 327–334, 2003  相似文献   

10.
Nitric oxide ( NO · ) plays an important role in the regulation of redox balance in keratinocytes post‐UVB exposure. Since endothelial cells releases NO · for a prolonged time post‐UVB, we determined whether human umbilical vein endothelial cells (HUVEC) could have an effect on UVB‐induced DNA damage and transformation of their adjacent keratinocytes (HaCaT) using a 3D cell co‐culturing system. Our data show that the levels of DNA breaks and/or cyclobutane pyrimidine dimer (CPD) along with γH2AX are higher in the co‐cultured than in the mono‐cultured keratinocytes post‐UVB. The NO · level in the co‐cultured cells is increased approximately 3‐fold more than in mono‐cultured HaCaT cells within 1‐hour post‐UVB but then is reduced quickly in co‐cultured HaCaT cells comparing to mono‐cultured cells from 6 to 24 h post‐UVB. However, the peroxynitrite (ONOO?) level is higher in the co‐cultured than in the mono‐cultured HaCaT cells in whole period post‐UVB. Furthermore, while expression level of inducible nitric oxide synthase (iNOS) is increased, the ratio of coupled/uncoupled eNOS is reduced in co‐cultured HaCaT cells compared to mono‐cultured HaCaT cells. Finally, the co‐cultured cells have a significantly increased transformation efficiency after repeating UVB exposure compared to mono‐culture HaCaT cells. Our results suggest that endothelial cells could enhance NO · /ONOO? imbalance and promote transformation of adjacent keratinocytes.  相似文献   

11.
People can get oral cancers from UV (290–400 nm) exposures. Besides high outdoor UV exposures, high indoor UV exposures to oral tissues can occur when consumers use UV‐emitting tanning devices to either tan or whiten their teeth. We compared the carcinogenic risks of skin to oral tissue cells after UVB (290–320 nm) exposures using commercially available 3D‐engineered models for human skin (EpiDerm?), gingival (EpiGing?) and oral (EpiOral?) tissues. To compare the relative carcinogenic risks, we investigated the release of cytokines, initial DNA damage in the form of cyclobutane pyrimidine dimers (CPDs), repair of CPDs and apoptotic cell numbers. We measured cytokine release using cytometric beads with flow cytometry and previously developed a fluorescent immunohistochemical assay to quantify simultaneously CPD repair rates and apoptotic cell numbers. We found that interleukin‐8 (IL‐8) release and the initial CPDs are significantly higher, whereas the CPD repair rates and apoptotic cell numbers are significantly lower for oral compared with skin tissue cells. Thus, the increased release of the inflammatory cytokine IL‐8 along with inefficient CPD repair and decreased death rates for oral compared with skin tissue cells suggests that mutations are accumulating in the surviving population of oral cells increasing people's risks for getting oral cancers.  相似文献   

12.
The possible regulation mechanism of red light was determined to discover how to retard UVA‐induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light‐emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm?2, and the total doses of red light were 0.18 J cm?2. Various indicators were measured before and after irradiation, including cell morphology, viability, β‐galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging‐related genes. Red light irradiation retarded the cumulative low‐dose UVA irradiation‐induced skin photoaging, decreased the expression of senescence‐associated β‐galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP‐1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA‐treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways.  相似文献   

13.
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm?2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.  相似文献   

14.
Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm?2) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L‐NAC (10 mm ) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation.  相似文献   

15.
Tissue inhibitors of metalloproteinases (TIMPs) are the major endogenous regulators of metalloproteinase activity in tissues. TIMPs are able to inhibit activity of all known matrix metalloproteinases (MMPs) and thus participate in controlling extracellular matrix synthesis and degradation. We showed previously elevated expressions of MMPs in the rabbit corneal epithelium upon UVB exposure and suggested that these enzymes might be involved in corneal destruction caused by excessive proteolysis. The aim of this study was to investigate TIMPs in the corneal epithelium after UV irradiation using immunohistochemical and biochemical methods. We found that as compared to control rabbit corneas where relatively high levels of TIMPs were present in the epithelium, repeated irradiation of the cornea with UVB rays (not with UVA rays of similar doses) significantly decreased TIMPs in corneal epithelial cells. The results of this study point to the suggestion that the decrease in TIMPs in the corneal epithelium after UVB irradiation contributes to increased proteolytic activity of MMPs in UVB‐irradiated corneal epithelium found previously.  相似文献   

16.
Two new bisabolane sesquiterpenoids, 1 and 2 , along with five known ones, 13‐hydroxyxanthorrhizol ( 3 ), 12,13‐epoxyxanthorrhizol ( 4 ), xanthorrhizol ( 5 ), β‐curcumene ( 6 ), and β‐bisabolol ( 7 ), were isolated from the rhizomes of Curcuma xanthorrhiza Roxb . The chemical structures of the new compounds were determined to be (7R,10R)‐10,11‐dihydro‐10,11‐dihydroxyxanthorrhizol 3‐Oβ‐D ‐glucopyranoside ( 1 ) and (?)‐curcuhydroquinone 2,5‐di‐Oβ‐D ‐glucopyranoside ( 2 ) on the basis of 1D‐ and 2D‐NMR spectroscopic analyses and optical‐rotation characteristics. Compounds 2 and 3 decreased MMP‐1 expression in UVB‐treated human keratinocytes by ca. 8.9‐ and 7.6‐fold at the mRNA level, and by ca. 9.2‐ and 6.6‐fold at the protein level, respectively. The results indicate that the isolated compounds may have anti‐aging effects through inhibition of MMP‐1 expression in skin cells.  相似文献   

17.
Organotellurium‐mediated living radical polymerizations (TERPs) and organostibine‐mediated living radical polymerizations (SBRPs) provide well‐defined polymers with a variety of polar functional groups via degenerative chain‐transfer polymerization. The high controllability of these polymerizations can be attributed to the rapid degenerative‐transfer process between the polymer‐end radicals and corresponding dormant species. The versatility of the methods allows the synthesis of AB diblock, ABA triblock, and ABC triblock copolymers by the successive addition of different monomers. This review summarizes the current status of TERP and SBRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1–12, 2006  相似文献   

18.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

19.
20.
The Cp*La(BH4)2(THF)2/n‐butylethylmagnesium (BEM) catalytic system has been assessed for the coordinative chain transfer copolymerization of styrene and 1‐hexene. Poly(styrene‐co‐hexene) statistical copolymers were obtained with number‐average molecular weight up to 7600 g/mol, PDI around 1.4 and 1.5 and up to 23% hexene content. The occurence of chain transfer reactions in the presence of excess BEM is established in the course of the statistical copolymerization. Thanks to this transfer process, the quantity of 1‐hexene in the copolymer is increased by a factor of about 3 for high ratio of hexene in the feed, extending the range of our concept of a chain transfer induced control of the composition of statistical copolymers to poly(styrene‐co‐hexene) copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号