首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Various fluorogenic probes utilizing tetrazine (Tz) as a fluorescence quencher and bioorthogonal reaction partner have been extensively studied over the past few decades. Herein, we synthesized a series of boron-dipyrromethene (BODIPY)-Tz probes using monochromophoric design strategy for bioorthogonal cellular imaging. The BODIPY-Tz probes exhibited excellent bicyclo[6.1.0]nonyne (BCN)-selective fluorogenicity with three- to four-digit-fold enhancements in fluorescence over a wide range of emission wavelengths, including the far-red region. Furthermore, we demonstrated the applicability of BODIPY-Tz probes in bioorthogonal fluorescence imaging of cellular organelles without washing steps. We also elucidated the aromatized pyridazine moiety as the origin of BCN-selective fluorogenic behavior. Additionally, we discovered that the fluorescence of the trans-cyclooctene (TCO) adducts was quenched in aqueous media via photoinduced electron transfer (PeT) process. Interestingly, we observed a distinctive recovery of the initially quenched fluorescence of BODIPY-Tz-TCO upon exposure to hydrophobic media, accompanied by a significant bathochromic shift of its emission wavelength relative to that exhibited by the corresponding BODIPY-Tz-BCN. Leveraging this finding, for the first time, we achieved dual-color bioorthogonal cellular imaging with a single BODIPY-Tz probe.  相似文献   

2.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

3.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

4.
The quality of starch‐containing foods may be significantly impaired by contamination with very small amounts of α‐amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α‐amylase (from Bacillus subtilis) in starch‐containing foods. The method consists of six steps: (1) crude extraction of α‐amylase by centrifugation and filtration; (2) α‐amylase purification by desalting and anion‐exchange chromatography; (3) reaction of the purified amylase with boron‐dipyrromethene (BODIPY)‐labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed‐phase solid‐phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α‐amylase activities as low as 10 mU/mL, which is enough to reduce the viscosity of starch‐containing foods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
《中国化学》2017,35(11):1711-1716
A fluorescent turn‐on probe for specifically targeting γ ‐glutamyltranspeptidase (GGT ) was designed and synthesized by integrating boron‐dipyrromethene (BODIPY ) as a chromophore and glutathione (GSH ) as the GGT substrate. GGT ‐catalyzed the cleavage of the γ ‐glutamyl bond and generated the aromatic hydrocarbon transfer between the sulfur and the nitrogen atom in BODIPY , leading to distinct optical changes. Such specific responsiveness provides an easily distinguishable fluorescence signal to visualize the GGT activity in living cells and differentiate GGT ‐positive cancer cells from GGT ‐negative cells.  相似文献   

6.
Bis(phenylethynyl)pyridylcarboxamides with amide side chains at the para position of the NH2 group possess strong solvatochromic properties compared with the meta analogues. Fluorescence binding titrations show that these probes exhibit remarkable fluorescence turn‐on responses upon interacting with the human telomeric G‐quadruplex (h‐TELO). Förster resonance energy transfer melting analysis shows the high selectivity of these probes for h‐TELO over duplex DNA. Isothermal titration calorimetry, as well as UV/Vis and fluorescence spectroscopy studies, show that the meta analogue has a twofold binding affinity for h‐TELO over the para analogue. The noncovalent interaction of these small‐molecule probes with h‐TELO has been used to regulate the assembly of novel supramolecular nanoarchitectures.  相似文献   

7.
γ‐Glutamyltranspeptidase (GGT) is a tumor biomarker that selectively catalyzes the cleavage of glutamate overexpressed on the plasma membrane of tumor cells. Here, we developed two novel fluorescent in situ targeting (FIST) probes that specifically target GGT in tumor cells, which comprise 1) a GGT‐specific substrate unit (GSH), and 2) a boron–dipyrromethene (BODIPY) moiety for fluorescent signalling. In the presence of GGT, sulfur‐substituted BODIPY was converted to amino‐substituted BODIPY, resulting in dramatic fluorescence variations. By exploiting this enzyme‐triggered photophysical property, we employed these FIST probes to monitor the GGT activity in living cells, which showed remarkable differentiation between ovarian cancer cells and normal cells. These probes represent two first‐generation chemodosimeters featuring enzyme‐mediated rapid, irreversible aromatic hydrocarbon transfer between the sulfur and nitrogen atoms accompanied by switching of photophysical properties.  相似文献   

8.
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor–acceptor (D‐A) substituted 1,2,3‐triazoles as conjugative π‐linkers between the alkali metal ion receptor N‐phenylaza‐[18]crown‐6 and different fluorophoric groups with different electron‐acceptor properties (4‐naphthalimide, meso‐phenyl‐BODIPY and 9‐anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge‐transfer (CT) type probes 1 , 2 and 7 , the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge‐separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting‐up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7 , which contains a 9‐anthracenyl moiety as the electron‐accepting fluorophore, is the only probe which retains light‐up features in water and works as a highly K+/Na+‐selective probe under simulated physiological conditions. Virtually decoupled BODIPY‐based 6 and photoinduced electron transfer (PET) type probes 3 – 5 , where the 10‐substituted anthracen‐9‐yl fluorophores are connected to the 1,2,3‐triazole through a methylene spacer, show strong ion‐induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3‐triazole fluoroionophores.  相似文献   

9.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

10.
A novel π‐conjugated triad and a polymer incorporating indolo[3,2‐b]‐carbazole (ICZ) and 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) were synthesized via a Sonogashira coupling. Compared to the parent BODIPY the absorption and fluorescence spectrum were for both compounds broader and redshifted. The redshift of the fluorescence and the decrease of the fluorescence quantum yield and decay time upon increasing solvent polarity were attributed to the formation of a partial charge‐transfer state. Upon excitation in the ICZ absorption band the ICZ fluorescence was quenched in both compounds mainly due to energy transfer to the BODIPY moiety. In a similar ICZ–π–DPP polymer (where DPP is diketopyrrolopyrrole), a smaller redshift of the absorption and fluorescence spectra compared to the parent DPP was observed. A less efficient quenching of the ICZ fluorescence in the ICZ–π–DPP polymer could be related to the unfavorable orientation of the transition dipoles of ICZ and DPP. The rate constant for energy transfer was for all compounds an order of magnitude smaller than predicted by Förster theory. While in a solid film of the triad a further redshift of the absorption maximum of nearly 100 nm was observed, no such shift was observed for the ICZ–π–BODIPY polymer.  相似文献   

11.
The asymmetric BODIPY 1 a (BODIPY=4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene), containing two chloro substituents at the 3,8‐positions and a reactive 5‐methyl group, was synthesized from the asymmetric dipyrroketone 3 , which was readily obtained from available pyrrole 2 a . The reactivity of 3,8‐dichloro‐6‐ethyl‐1,2,5,7‐tetramethyl‐BODIPY 1 a was investigated by using four types of reactions. This versatile BODIPY undergoes regioselective Pd0‐catalyzed Stille coupling reactions and/or regioselective nucleophilic addition/elimination reactions, first at the 8‐chloro and then at the 3‐chloro group, using a variety of organostannanes and N‐, O‐, and S‐centered nucleophiles. On the other hand, the more reactive 5‐methyl group undergoes regioselective Knoevenagel condensation with an aryl aldehyde to produce a monostyryl‐BODIPY, and oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) gives the corresponding 5‐formyl‐BODIPY. Investigation of the reactivity of asymmetric BODIPY 1 a led to the preparation of a variety of functionalized BODIPYs with λmax of absorption and emission in the ranges 487–587 and 521–617 nm, respectively. The longest absorbing/emitting compound was the monostyryl‐BODIPY 16 , and the largest Stokes shift (49 nm) and fluorescence quantum yield (0.94) were measured for 5‐thienyl‐8‐phenoxy‐BODIPY 15 . The structural properties (including 16 X‐ray structures) of the new series of BODIPYs were investigated.  相似文献   

12.
The preparation of two highly sensitive fluorogenic α-tocopherol (TOH) analogues which undergo >30-fold fluorescence intensity enhancement upon reaction with peroxyl radicals is reported. The probes consist of a chromanol moiety coupled to the meso position of a BODIPY fluorophore, where the use of a methylene linker (BODIPY-2,2,5,7,8-pentamethyl-6-hydroxy-chroman adduct, H(2)B-PMHC) vs an ester linker (meso-methanoyl BODIPY-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, H(2)B-TOH) enables tuning their reactivity toward H-atom abstraction by peroxyl radicals. The development of a high-throughput fluorescence assay for monitoring kinetics of peroxyl radical reactions in liposomes is subsequently described where the evolution of the fluorescence intensity over time provides a rapid, facile method to conduct competitive kinetic studies in the presence of TOH and its analogues. A quantitative treatment is formulated for the temporal evolution of the intensity in terms of relative rate constants of H-atom abstraction (k(inh)) from the various tocopherol analogues. Combined, the new probes, the fluorescence assay, and the data analysis provide a new method to obtain, in a rapid, parallel format, relative antioxidant activities in phospholipid membranes. The method is exemplified with four chromanol-based antioxidant compounds differing in their aliphatic tails (TOH, PMHC, H(2)B-PMHC, and H(2)B-TOH). Studies were conducted in six different liposome solutions prepared from poly- and mono-unsaturated and saturated (fluid vs gel phase) lipids in the presence of either hydrophilic or lipophilic peroxyl radicals. A number of key insights into the chemistry of the TOH antioxidants in lipid membranes are provided: (1) The relative antioxidant activities of chromanols in homogeneous solution, arising from their inherent chemical reactivity, readily translate to the microheterogeneous environment at the water/lipid interface; thus similar values for k(inh)(H(2)B-PMHC)/k(inh)(H(2)B-TOH) in the range of 2-3 are recorded both in homogeneous solution and in liposome suspensions with hydrophilic or lipophilic peroxyl radicals. (2) The relative antioxidant activity between tocopherol analogues with the same inherent chemical reactivity but bearing short (PMHC) or long (TOH) aliphatic tails, k(inh)(PMHC)/k(inh)(TOH), is ~8 in the presence of hydrophilic peroxyl radicals, regardless of the nature of the lipid membrane into which they are embedded. (3) Antioxidants embedded in saturated lipids do not efficiently scavenge hydrophilic peroxyl radicals; under these conditions wastage reactions among peroxyl radicals become important, and this translates into larger times for antioxidant consumption. (4) Lipophilic peroxyl radicals show reduced discrimination between antioxidants bearing long and short aliphatic tails, with k(inh)(PMHC)/k(inh)(TOH) in the range of 3-4 for most lipid membranes. (5) Lipophilic peroxyl radicals are scavenged with the same efficiency by all four antioxidants studied, regardless of the nature of their aliphatic tail or the lipid membrane into which they are embedded. These data underpin the key role the lipid environment plays in modulating the rate of reaction of antioxidants characterized by similar inherent chemical reactivity (arising from a conserved chromanol moiety) but differing in their membrane mobility (structural differences in the lipophilic tail). Altogether, a novel, facile method of study, new insights, and a quantitative understanding on the critical role of lipid diversity in modulating antioxidant activity in the lipid milieu are reported.  相似文献   

13.
The peracetylated hexaamylose (maltohexaose) 18 was obtained by an improved acetolysis of cyclomaltohexaose (α‐cyclodextrin, α‐CD, 16 ), and transformed into the benzyl‐ and 4‐chlorobenzyl‐protected thioglycosides 22 and 23 , respectively (Scheme 2). Sequential chain elongation of 22 and 23 by glycosidation of the C‐ethynylated glucosides 9 and 11 gave the α‐anomeric heptaglycosides 24 and 26 , respectively, and their anomers 25 and 27 (Scheme 3). These were transformed into the glycosyl acceptors 28 , 30 , and 31 . Glycosidation of 28 and 30 by 13 and 15 , respectively, led to the benzyl‐protected octasaccharides 32 (αα5α) and 33 (βα5α), and to the chlorobenzylated analogues 34 (αα5α) and 35 (βα5α), while glycosidation of 31 led to the 4‐chlorobenzyl‐protected analogues 36 (αα5β) and 37 (βα5β) (Scheme 4). Hay coupling of O‐Bn‐ and O‐Ac‐protected linear octaoses 32 (αα5α) and 33 (βα5α) led to the cyclooctaamylose (γ‐cyclodextrin) analogues 38 and 43 , respectively (Scheme 5). Similarly, the 4‐chlorobenzyl‐protected analogues 34 and 35 gave 39 and 44 , and the anomeric linear precursors 36 and 37 provided the cyclootaamylose analogues 48 and 50 , respectively (Scheme 6). The influence of the constitution and configuration of the linear precursors on the rate and yield of the cyclisation was relatively weak. Deprotection and hydrogenation of 38 and 43 yielded the γ‐CD analogues 42 (αα5α) and 47 (βα5α), where one glycosidic O‐atom is replaced by a butanediyl group, while FeCl3‐promoted dechlorobenzylation of 39 and 44 did not affect the butadiyne moiety and afforded the acetyleno γ‐CD's 40 (αα5α) and 45 (βα5α), respectively. Similarly, deprotection of 48 and 50 afforded the acetyleno γ‐CD analogues 49 (αα5β) and 51 (βα5β), respectively, which contain one butanediyl moiety instead of a glycosidic O‐atom. MM3* Force‐field calculations evidence the strong influence of the configuration and constitution of the new γ‐CD analogues on the shape of the cavity.  相似文献   

14.
We have developed a series of new ultrafluorogenic probes in the blue‐green region of the visible‐light spectrum that display fluorescence enhancement exceeding 11 000‐fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans‐cyclooctene(TCO)–tetrazine chemistry platform. By exploiting highly efficient through‐bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes. No‐wash, fluorogenic imaging of diverse targets including cell‐surface receptors in cancer cells, mitochondria, and the actin cytoskeleton is possible within seconds, with minimal background signal and no appreciable nonspecific binding, opening the possibility for in vivo sensing.  相似文献   

15.
We report the development of YC23, a novel green BODIPY‐based dimaleimide derivative that undergoes a fluorogenic addition reaction (FlARe) with a genetically encodable peptide tag (dC10α) that can be fused to a protein of interest (POI). We also demonstrate the application of this reaction for the fluorogenic labelling of a specific POI in bacterial lysate and in living mammalian cells.  相似文献   

16.
Five different highly fluorescent boron‐dipyrromethene (BODIPY)‐tagged N‐heterocyclic carbene NHC–gold halide complexes were synthesized. The substitution of the halogeno ligand by 4‐substituted aryl thiolates leads to a decrease in the brightness of the complexes. This decrease depends on the electronic nature of the thiols, being most pronounced with highly electron‐rich thiols (4‐R=NMe2). The brightness of the gold thiolates also depends on the distance between the sulfur atom and the BODIPY moiety. The systematic variation of the electron density of [(NHC–bodipy)Au(SC6H4R)] (via different R groups) enables the systematic variation of the fluorescence brightness of an appended BODIPY fluorophore. Based on this and supported by DFT calculations, a photoinduced electron‐transfer quenching appears to be the dominant mechanism controlling the brightness of the appended BODIPY dye.  相似文献   

17.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

18.
A series of symmetric and asymmetric benzo[c,d]indole‐containing aza boron dipyrromethene (aza‐BODIPY) compounds was synthesized by a titanium tetrachloride‐mediated Schiff‐base formation reaction of commercially available benzo[c,d]indole‐2(1H)‐one and heteroaromatic amines. These aza‐BODIPY analogues show different electronic structures from those of regular aza‐BODIPYs, with hypsochromic shifts of the main absorption compared to their BODIPY counterparts. In addition to the intense fluorescence in solution, asymmetric compounds exhibited solid‐state fluorescence due to significant contribution of the vibronic bands to both absorption and fluorescence as well as reduced fluorescence quenching in the aggregates. Finally, aggregation‐induced emission enhancement, which is rare in BODIPY chromophores, was achieved by introducing a nonconjugated moiety into the core structure.  相似文献   

19.
We report the development of YC23, a novel green BODIPY‐based dimaleimide derivative that undergoes a fluorogenic addition reaction (FlARe) with a genetically encodable peptide tag (dC10α) that can be fused to a protein of interest (POI). We also demonstrate the application of this reaction for the fluorogenic labelling of a specific POI in bacterial lysate and in living mammalian cells.  相似文献   

20.
Due to their industrial interest and significance, developing a rapid method for screening β‐xylosidase activities would certainly facilitate the research and improve production in xylan‐related industries especially in the pulp and paper industries. Here we report the synthesis of two activity probes, LCL‐ 6X and ‐ 12X , for β‐xylosidase. They both carry a β‐xylopyranosyl recognition head, which is linked to a latent trapping device consisting of a 2‐fluoromethylphenoxyl group and a biotin reporter group. They differ only in the length of their hydrophobic linker. A model study using a β‐xylosidase from T. koningii demonstrates that both probes could successfully label the target hydrolase and give rise to biotinylated proteins. They could thus potentially become a powerful tool in screening β‐xylosidase from microbial sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号