首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the detailed investigation of temperature‐ and pH‐triggered conformational switching of resorcin[4]arene cavitands 1 – 10 (Figs. 1, 8, and 9). Depending on the experimental conditions, these macrocycles adopt a vase conformation, featuring a deep cavity for potential guest inclusion, or two kite conformations (kite 1 and kite 2) with flat, extended surfaces (Schemes 1 and 2). The thermodynamic and kinetic parameters for the interconversion between these structures were determined by variable‐temperature NMR (VT‐NMR) spectroscopy (Figs. 27 and 10, and Tables 1 and 2). It was discovered that vasekite switching of cavitands is strongly solvent‐dependent: it is controlled not only by solvent polarity but also by solvent size. Conformational interconversions similar to those of the parent structure 1 with four quinoxaline flaps are also observed when the octol base skeleton is differentially or incompletely bridged. Only octanitro derivative 2 was found to exist exclusively in the kite conformation under all experimental conditions. The detailed insight into the vase?kite conformational equilibrium gained in this investigation provides the basis for the design and construction of new, dynamic resorcin[4]arene cavitands that are switchable between bistable states featuring strongly different structures and functions.  相似文献   

2.
The utility of molecular actuators in nanoelectronics requires activation of mechanical motion by electric charge at the interface with conductive surfaces. We functionalized redox‐active resorcin[4]arene‐quinone cavitands with thioethers as surface‐anchoring groups at the lower rim and investigated their propensity to act as electroswitchable actuators that can adopt two different conformations in response to changes in applied potential. Molecular design was assessed by DFT calculations and X‐ray analysis. Electronic properties were experimentally studied in solution and thin films electrochemically, as well as by X‐ray photoelectron spectroscopy on gold substrates. The redox interconversion between the oxidized (quinone, Q ) and the reduced (semiquinone, SQ ) state was monitored by UV‐Vis‐NIR spectroelectrochemistry and EPR spectroscopy. Reduction to the SQ state induces a conformational change, providing the basis for potential voltage‐controlled molecular actuating devices.  相似文献   

3.
Structural dissimilarity sampling (SDS) has been proposed as an enhanced conformational sampling method for reproducing the structural transitions of a given protein. SDS consists of cycles of two steps: (1) Selections of initial structures with structural dissimilarities by referring to a measure. (2) Conformational resampling by restarting short‐time molecular dynamics (MD) simulations from the initial structures. In the present study, an efficient measure is proposed as a dynamically self‐guiding selection to accelerate the structural transitions from a reactant state to a product state as an extension to the original SDS. In the extended SDS, the inner product (IP ) between the reactant and the snapshots generated by short‐time MD simulations are evaluated and ranked according to the IP s at every cycle. Then, the snapshots with low IP s are selected as initial structures for the short‐time MD simulations. This scheme enables one to choose dissimilar and distant initial structures from the reactant, and thus the initial structures dynamically head towards the product, promoting structural transitions from the reactant. To confirm the conformational sampling efficiency, the extended SDS was applied to maltodextrin binding protein (MBP), and we successfully reproduced the structural transition from the open to closed states with submicrosecond‐order simulation times. However, a conventional long‐time MD simulation failed to reproduce the same structural transition. We also compared the performance with that obtained by the ordinary SDS and other sampling techniques that have been developed by us to characterize the possible utility of the extended SDS for actual applications. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
The synthesis of novel spatially directional multivalent resorcin[4]arene cavitand glycoconjugates (RCGs) and their ability to catalyze organic reactions is reported. The β‐d ‐glucopyranoside moieties on the upper rim of the “bowl”‐shaped resorcin[4]arene cavitand core are capable of multiple hydrogen‐bond interactions resulting in a pseudo‐cavity, which has been investigated for organic transformations in aqueous media. The RCGs have been demonstrated to catalyze thiazole formation, thiocyanation, copper(I)‐catalyzed azide alkyne cycloaddition (CuAAC), and Mannich reactions; they impart stereoselectivity in the three‐component Mannich reaction. Thermodynamic values obtained from 1H diffusion‐ordered spectroscopy (DOSY) experiments suggest that the upper saccharide cavity of the RCG and not the resorcin[4]arene cavity is the site of the complexation event.  相似文献   

5.
The temperature and pressure dependences of 35Cl nuclear quadrupole resonance (NQR) frequency and spin–lattice relaxation time (T1) were investigated for 1‐chloro‐2,4‐dinitrobenzene and 1,2‐dichloro‐3‐nitrobenzene. T1 was measured in the temperature range 77–300 K. Furthermore, the NQR frequency (ν) and T1 for these compounds were measured as a function of pressure up to 5.1 kbar at 300 K. Relaxation was found to be due to the torsional motion of the molecule and the reorientation motion of the nitro group. By analysing the temperature dependence of T1, the activation energy for the reorientation motion of the nitro group was obtained. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W1 and W2 for the Δm = ±1 and Δm = ±2 transitions, were also obtained. Both compounds showed a non‐linear variation of NQR frequency with pressure. The pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant‐volume temperature coefficients of the NQR frequency. The spin–lattice relaxation time T1 for both the compounds was found to be weakly dependent on pressure, showing that the relaxation is mainly due to the torsional motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

7.
Four enantiopure 1,3‐diethynylallenes (DEAs) with OH termini were attached to the rim of a resorcin[4]arene cavitand. The system undergoes conformational switching between a cage form, closed by a circular H‐bonding array, and an open form, with the tertiary alcohol groups reaching outwards. The cage form is predominant in apolar solvents, and the open conformation in small, polar solvents. Both states were confirmed in solution and in X‐ray co‐crystal structures. ECD spectra of the alleno‐acetylenic cages (AACs) are highly conformation sensitive, the longest wavelength Cotton effect at 304 nm switches from Δ?=+191 m ?1 cm?1 for open (P)4‐AAC?acetonitrile to Δ?=?691 m ?1 cm?1 (ΔΔ?=882 m ?1 cm?1) for closed (P)4‐AAC?cyclohexane. Complete chiral resolution of (±)‐trans‐1,2‐dimethylcyclohexane was found in the X‐ray structures, with (P)4‐AAC exclusively bound to the (R,R)‐ and (M)4‐AAC to the (S,S)‐guest. Guest inclusion occurs in a higher energy diaxial conformation.  相似文献   

8.
L ‐2‐haloacid dehalogenase (L ‐DEX) catalyzes the hydrolytic dehalogenation of L ‐2‐haloalkanoic acids to produce the corresponding D ‐2‐hydroxyalkanoic acids. This enzyme is expected to be applicable to the bioremediation of environments contaminated with halogenated organic compounds. We analyzed the reaction mechanism of L ‐DEX from Pseudomonas sp. YL (L ‐DEX YL) by using molecular modeling. The complexes of wild‐type L ‐DEX YL and its K151A and D180A mutants with its typical substrate, L ‐2‐chloropropionate, were constructed by docking simulation. Subsequently, molecular dynamics (MD) and ab initio fragment molecular orbital (FMO) calculations of the complexes were performed. The ab initio FMO method was applied at the MP2/6‐31G level to estimate interfragment interaction energies. K151 and D180, which are experimentally shown to be important for enzyme activity, interact particularly strongly with L ‐2‐chloropropionate, catalytic water, nucleophile (D10), and with each other. Our calculations suggest that K151 stabilizes substrate orientation and balances the charge around the active site, while D180 stabilizes the rotation of the nucleophile D10, fixes catalytic water around D10, and prevents K151 from approaching D10. Further, D180 may activate catalytic water on its own or with K151, S175, and N177. These roles are consistent with the previous results. Thus, MD and ab initio FMO calculations are powerful tools for the elucidation of the mechanism of enzymatic reaction at the molecular level and can be applied to other catalytically important residues. The results obtained here will play an important role in elucidating the reaction mechanism and rational design of L ‐DEX YL with improved enzymatic activity or substrate specificity. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
The synthesis of the quinoxaline‐bridged resorcin[4]arene cavitand 1 was accomplished from 2‐[3,5‐di(tert‐butyl)phenyl]acetaldehyde via formation of the intermediate octol 2 . Such cavitands are known to occur in an open `kite' conformation at low temperature (<213 K) but to adopt a `vase' conformation at elevated temperatures (>318 K). We discovered that protonation of cavitand 1 at room temperature by common acids, such as CF3COOH, also causes reversible switching from `vase' to `kite', and that this conformational change can be conveniently monitored by both 1H‐NMR and UV/VIS spectroscopy.  相似文献   

10.
In the molecule of 4‐(2‐chlorophenyl)pyrrolo[1,2‐a]quinoxaline, C17H11ClN2, (I), the bond lengths are consistent with electron delocalization in the two outer rings of the fused tricyclic system, with a localized double bond in the central ring. The molecules of (I) are linked into chains by a π–π stacking interaction. In (4RS)‐4‐(1,3‐benzodioxol‐6‐yl)‐4,5‐dihydropyrrolo[1,2‐a]quinoxaline, C18H14N2O2, (II), the central ring of the fused tricyclic system adopts a conformation intermediate between screw‐boat and half‐chair forms. A combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules of (II) into a sheet. Comparisons are made with related compounds.  相似文献   

11.
We report the synthesis and enantioseparation characteristics of two novel covalently immobilized deoxycholic acid derivatives as chiral stationary phases for high‐performance liquid chromatography. In the structure of the first stationary phase, the 3‐position of deoxycholic acid is substituted with a 3,5‐dinitrophenylcarbamoyl group and the second one has an additional calix[4]arene attached to the carboxylic group of the deoxycholic acid. The chromatographic performance of the stationary phases was evaluated with enantioseparation of N‐(3,5‐dinitrobenzoyl)‐dl ‐leucine, N‐(3,5‐dinitrobenzoyl)‐dl ‐valine, omeprazole, diclofop‐methyl, dl ‐mandelic acid and (RS)‐pregabalin. Comparison of the performance characteristics of the prepared chiral stationary phases provided evidence for the active involvement of the calix[4]arene unit in the chiral recognition process. Both stationary phases are chemically bonded to the silica and can be used in both normal‐phase and reversed‐phase modes.  相似文献   

12.
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl‐tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l ‐tyrosine (l ‐Tyr), compared to the analogs d ‐Tyr, p‐acetyl‐, and p‐azido‐phenylalanine (ac‐Phe, az‐Phe). We simulate l ‐ and d ‐Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous “MD/GBSA” procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l ‐Tyr, ac‐ and az‐Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l ‐Tyr or d ‐Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l ‐Tyr is the ligand and a d ‐Tyr specific mutant when d ‐Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
An atropisomeric molecular balance was developed to study face‐to‐face arene–arene interactions. The balance has a large central 1,4,5,8‐naphthalene diimide surface that forms intramolecular arene–arene interactions with two pendent arms. The balance adopts distinct syn and anti isomers with varying numbers of intramolecular interactions. Thus, the strength of the arene–arene interaction could be quantitatively measured by NMR spectroscopy from the anti/syn ratios. The size of the arene arms was easily varied, which allowed examination of the relationship between arene size and strength of the interaction. A nonlinear size dependence was observed in solution with larger arene arms having a disproportionately stronger arene–arene interaction. The intramolecular arene–arene interactions were also characterized in the solid state by X‐ray crystallography. These studies were facilitated by the kinetic stability of the syn and anti isomers at room temperature due to the high isomerization barrier (ΔG=27.0 kcal mol?1). Thus, the anti isomer could be selectively isolated and crystallized in its folded conformation. The X‐ray structures confirmed that the anti isomers formed two strong intramolecular arene–arene interactions with face‐to‐face geometries. The solid‐state structure analysis also reveals that the rigid framework may contribute to the observed nonlinear size trend. The acetate linker is slightly too long, which selectively destabilizes the balances with smaller arene arms. The larger arene arms are able to compensate for the longer linker and form effective intramolecular arene–arene interactions.  相似文献   

14.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

15.
The conformational equilibrium of the axial/equatorial conformers of 4‐methylene‐cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153 K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (?ΔG°) can be examined, and the barrier to ring interconversion (ΔG#) can be determined. The structural influence of sp2 hybridization on both ΔG° and ΔG# of the cyclohexyl moiety can be quantified.  相似文献   

16.
We report the synthesis of modified Cram‐type cavitands bearing one or two fluorescent labels for single‐molecule spectroscopic studies of vase? kite conformational switching (Scheme 3). Syntheses were performed by stepwise bridging of the four couples of neighboring H‐bonded OH groups of resorcin[4]arene bowls (Schemes 2 and 3). The new substitution patterns enable the construction of a large variety of future functional architectures. 1H‐NMR Investigations showed that the new partially and differentially bridged cavitands feature temperature‐ and pH‐triggered vase? kite conformational isomerism similar to symmetrical cavitands with four identical quinoxaline bridges (Table). It was discovered that vase? kite switching of cavitands is strongly solvent‐dependent.  相似文献   

17.
Two new kinds of alanine‐substituted calix[4]arene stationary phases of 5,11,17,23‐p‐tert‐butyl‐25,27‐bis(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐26,28‐dihyroxycalix[4]arene‐bonded silica gel stationary phase (BABS4) and 5, 11, 17, 23‐p‐tert‐butyl‐25,26,27,28‐tetra(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐calix[4]arene‐bonded silica gel stationary phase (TABS4) were prepared and characterized in the present study. They were compared with each other and investigated in terms of their chromatographic performance by using polycyclic aromatic hydrocarbons, disubstituted benzene isomers, and mono‐substituted benzenes as solute probes. The results indicated that both BABS4 and TABS4 exhibited multiple interactions with analytes. In addition, the commonly used Tanaka characterization protocol for the evaluation of commercially available stationary phases was applied to evaluate the properties of these two new functionalized calixarene stationary phases. The Tanaka test results were compared with Zorbax Eclipse XDB C18 and Kromasil phenyl columns, respectively. BABS4 has stronger hydrogen‐bonding capacity and ion‐exchange capacity than TABS4, and features weaker hydrophobicity and hydrophobic selectivity. Both of them behave similarly in stereoselectivity. Both BABS4 and TABS4 are weaker than C18 and phenyl stationary phases in hydrophobicity and hydrophobic selectivity.  相似文献   

18.
We present a comprehensive benchmark computational study which has explored a complete path of the anomerization reaction of bare d ‐erythrose involving a pair of the low‐energy α‐ and β‐furanose anomers, the former of which was observed spectroscopically (Cabezas et al., Chem. Commun. 2013, 49, 10826). We find that the ring opening of the α‐anomer yields the most stable open‐chain tautomer which step is followed by the rotational interconversion of the open‐chain rotamers and final ring closing to form the β‐anomer. Our results indicate the flatness of the reaction's potential energy surface (PES) corresponding to the rotational interconversion path and its sensitivity to the computational level. By using the explicitly correlated coupled cluster CCSD(T)‐F12/cc‐pVTZ‐F12 energies, we determine the free energy barrier for the α‐furanose ring‐opening (rate‐determining) step as 170.3 kJ/mol. The question of the number of water molecules (n ) needed for optimal stabilization of the erythrose anomerization reaction rate‐determining transition state is addressed by a systematic exploration of the PES of the ring opening in the α‐anomer‐(H2O)n and various β‐anomer‐(H2O)n (n = 1–3) clusters using density functional and CCSD(T)‐F12 computations. These computations suggest the lowest free energy barrier of the ring opening for doubly hydrated α‐anomer, achieved by a mechanism that involves water‐mediated multiple proton transfer coupled with the furanose C O bond breakage. Among the methods used, the G4 performed best against the CCSD(T)‐F12 reference at estimating the ring‐opening barrier heights for both the hydrated and bare erythrose conformers. Our results for the hydrated species are most relevant to an experimental study of the anomerization reaction of d ‐erythrose to be carried out in microsolvation environment. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Described in this paper are the synthesis and structure of novel and edge‐functionalized zigzag hydrocarbon belts. A stepwise “fjord‐stitching” strategy featuring repetitive intramolecular acylation reactions of a resorcin[4]arene derivative as the key steps afforded a biscarbonyl‐functionalized octahydrobelt[8]arene product. Facile ketone reduction with NaBH4 and nucleophilic addition with n‐butyllithium produced secondary and tertiary alcohol‐containing molecular belts, respectively. Selective oxidation reactions of biscarbonyl‐bearing octahydrobelt[8]arene with m‐CPBA and (PhSeO)2O furnished the corresponding lactone‐ and 1,4‐quinone‐embedded molecular belts. Depending on the functional groups on the edges, the acquired belt molecules adopt different shapes such as square prism, truncated cone, and elliptical cylinder.  相似文献   

20.
A novel nucleating agent (TBC8‐t), self‐assembled with ptert‐butylcalix[8]arene (TBC8) and toluene, was used to manipulate the crystallization behavior of poly(L ‐lactic acid) (PLLA). Toluene molecules were used to adjust the crystallization structure of TBC8. Differential scanning calorimetry results show that the crystallization peak temperature (Tc) and crystallization rate (ΔHc/time) of PLLA nucleated with TBC8‐t are 132.3 °C and 0.24 J/gs, respectively, which are much higher than that with conventional nucleating agent‐talc (Tc = 119.3 °C, ΔHc/time = 0.13 J/gs). The results of polarized optical microscopy demonstrate that TBC8‐t could greatly enhance the crystallization rate of PLLA by increasing the nucleation rate rather than crystal growth rate. Along with an improvement of the crystallization rate, the crystalline morphology of PLLA is also affected by TBC8‐t. The addition of TBC8‐t transforms most of the original spherulite crystals into sheaf‐like crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1235–1243, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号