首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A P212121 polymorph of the title compound, [Cu(CH3CN)4]BF4, is reported. The crystal structure is very similar to the structure of the Pna21 polymorph reported by Jones & Crespo [Acta Cryst. (1998), C 54 , 18–20]. The anions and one of the three independent cations occupy similar positions in both polymorphs. Two of the four symmetry‐related positions of the other two cations are also identical in the two polymorphs, and the other two positions are related by mirror symmetry. The crystal used for the structure determination contained a volume fraction of 0.088 (7) of the Pna21 polymorph.  相似文献   

2.
Pr4S3[Si2O7] and Pr3Cl3[Si2O7]: Derivatives of Praseodymium Disilicate Modified by Soft Foreign Anions For synthesizing both the disilicate derivatives Pr4S3[Si2O7] and Pr3Cl3[Si2O7], Pr, Pr6O11 and SiO2 are brought to reaction with S and PrCl3, respectively, in suitable molar ratios (850 °C, 7 d) in evacuated silica tubes. By using NaCl as a flux, Pr4S3[Si2O7] crystallizes as pale green, transparent single crystals (tetragonal, I41/amd, a = 1201.6(1), c = 1412.0(2) pm, Z = 8) with the appearance of slightly compressed octahedra. On the other hand, Pr3Cl3[Si2O7] emerges as pale green, transparent platelets and crystallizes monoclinically (space group: P21, a = 530.96(6), b = 1200.2(1), c = 783.11(8) pm, β = 109.07(1)°, Z = 2). In both crystal structures ecliptically conformed [Si2O7]6– units of two corner‐linked [SiO4] tetrahedra with Si–O–Si bridging angles of 131° in the sulfide and 148° in the chloride disilicate are present. In Pr4S3[Si2O7] both crystallographically independent Pr3+ cations show coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) and 9 (3 S2– and 6 O2–). For Pr1, Pr2 and Pr3 in Pr3Cl3[Si2O7] coordination numbers of 10 (5 Cl and 5 O2–) and 9 (2 ×; 4 Cl and 5 O2– or 3 Cl and 6 O2–, respectively) occur.  相似文献   

3.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

4.
A novel polymorph of RbCuCl3 (rubidium copper trichloride), denoted ϵ‐RbCuCl3, has been prepared by chemical vapour transport (CVT) from a mixture of CuO, CuCl2, SeO2 and RbCl. The new polymorph crystallizes in the orthorhombic space group C2221. The crystal structure is based on an octahedral framework of the 4H perovskite type. The Rb+ and Cl ions form a four‐layer closest‐packing array with an ABCB sequence. The Cu2+ cations reside in octahedral cavities with a typical [4 + 2]‐Jahn–Teller‐distorted coordination, forming four short and two long Cu—Cl bonds. ϵ‐RbCuCl3 is the most structurally complex and most dense among all currently known RbCuCl3 polymorphs, which allows us to suggest that it is a high‐pressure phase, which is unstable under ambient conditions.  相似文献   

5.
The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X‐ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1‐(2‐hydroxy‐2‐phosphonato‐2‐phosphonoethyl)‐1H‐imidazol‐3‐ium. Strong intermolecular hydrogen bonds (with donor–acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor–acceptor distances greater than 2.70 Å), forming three‐dimensional layered structures. In the monoclinic polymorph, there are hydrogen‐bonded centrosymmetric dimers linked by four strong O—H...O hydrogen bonds, which are not present in the triclinic polymorph.  相似文献   

6.
Synthesis and Crystal Structure of Bi2ErO4I Bi2ErO4I was prepared by solid‐state reaction of stoichiometric mixture of BiOI, Bi2O3 and Er2O3. Bi2ErO4I is a new compound and the first bismuth rare earth oxide iodide. The crystal structure was determined by the Rietveldmethod (P4/mmm, a = 3,8896(6) Å, c = 9,554(2) Å, Z = 1). In this structure [M3O4]+‐layers are interleaved by single I‐layers. Er and Bi atoms of Bi2ErO4I are 8‐coordinated. The structure can be derived from the LiBi3O4Cl2‐structure type.  相似文献   

7.
Two polymorphs of L‐aspartic acid hydrochloride, C4H8NO4+·Cl, were obtained from the same aqueous solution. Their crystal structures have been determined from single‐crystal data collected at 100 K. The crystal structures revealed three‐ and two‐dimensional hydrogen‐bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N—H...Cl and O—H...Cl interactions and form alternating cation–anion layer‐like structures. The two polymorphs share common structural features; however, the conformations of the L‐aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.  相似文献   

8.
On the Dimorphism of Nd3Cl[SiO4]2 On reacting NdCl3, Nd2O3, and SiO2 (molar ratio: 1 : 4 : 6) at 850 °C in evacuated silica tubes, pale violet, hydrolysis resistant neodymium(III) chloride ortho‐silicate Nd3Cl[SiO4]2 can be obtained within seven days. If equimolar amounts of NaCl are added as flux, rod‐ or platelet‐shaped, transparent single crystals of two modifications accumulate simultaneously. The one with the higher density (A‐Nd3Cl[SiO4]2) crystallizes monoclinically (C2/c, no. 15; a = 1416.6(1), b = 638.79(6), c = 872.21(9) pm, β = 98.403(7)°; Vm = 117.55 cm3/mol, Z = 4), whereas the one with the lower density (B‐Nd3Cl[SiO4]2) exhibits orthorhombic symmetry (Pnma, no. 62; a = 709.36(7), b = 1815.7(2), c = 631.48(6) pm; Vm = 122.45 cm3/mol, Z = 4). Two crystallographically independent Nd3+ cations exist in each of both crystal structures, which in the A type are surrounded by nine (1 Cl + 8 O2–) and ten (2 Cl + 8 O2–), whilst those in the B type by only two times eight (1 Cl + 7 O2– and 2 Cl + 6 O2–) anions, respectively. Thereby all oxygen atoms of both forms represent members of discrete ortho‐silicate tetrahedra ([SiO4]4–). Although both crystal structures are built of alternating anionic double layers {(Nd1)2[SiO4]2}2– and cationic single layers {(Nd2)Cl}2+, there is a higher cross‐linkage of the building units in the A‐type lattice, where the cations are coordinated by three and four tetrahedra edges of ortho‐silicate anions, compared to only two times two of them in the B type. From this an about 4% higher density of Nd3Cl[SiO4]2 results for the A‐type structure (Dx = 5.55 g/cm3) in comparison with B‐type Nd3Cl[SiO4]2 (Dx = 5.33 g/cm3).  相似文献   

9.
Thalassemia is a genetic blood disorder requiring life‐long blood transfusions. This process often results in iron overload and can be treated by an iron‐chelating agent, like deferiprone (3‐hydroxy‐1,2‐dimethylpyridin‐4‐one), C7H9NO2, in an oral formulation. The first crystal structure of deferiprone, (Ia), was reported in 1988 [Nelson et al. (1988). Can. J. Chem. 66 , 123–131]. In the present study, two novel polymorphic forms, (Ib) and (Ic), of deferiprone were identified concomitantly with polymorph (Ia) during the crystallization experiments. Polymorph (Ia) was redetermined at low temperature for comparison of the structural features and lattice energy values with polymorphs (Ib) and (Ic). Polymorph (Ia) crystallized in the orthorhombic space group Pbca, whereas both polymorphs (Ib) and (Ic) crystallized in the monoclinic space group P21/c. The asymmetric units of (Ia) and (Ib) contain one deferiprone molecule, while polymorph (Ic) has three crystallographically independent molecules (A, B and C). All three polymorphs have similar hydrogen‐bonding features, such as an R22(10) dimer formed by O—H…O hydrogen bonds, an R43(20) tetramer formed by C—H…O hydrogen bonds and π–π interactions, but the polymorphs differ in their molecular arrangements in the solid state and are classified as packing polymorphs. O—H…O and C—H…O hydrogen bonds lead to the formation of two‐dimensional hydrogen‐bonded parallel sheets which are interlinked by π–π stacking interactions. In the three‐dimensional crystal packing, the deferiprone molecules were aggregated as corrugated sheets in polymorphs (Ia) and (Ic), whereas in polymorph (Ib), they were aggregated as a square‐grid network. The characteristic crystalline peaks of polymorphs (Ia), (Ib) and (Ic) were established through powder X‐ray diffraction analysis. The Rietveld analysis was also performed to estimate the contribution of the polymorphs to the bulk material.  相似文献   

10.
The crystal structures of a new polymorph of dipotassium hydrogen citrate, 2K+·HC6H5O72?, and potassium rubidium hydrogen citrate, K+·Rb+·HC6H5O72?, have been solved and refined using laboratory powder X‐ray diffraction and optimized using density functional techniques. In the new polymorph of the dipotassium salt, KO7 and KO8 coordination polyhedra share corners and edges to form a three‐dimensional framework with channels parallel to the a axis and [111]. The hydrophobic methylene groups face each other in the channels. The un‐ionized carboxylic acid group forms a strong charge‐assisted hydrogen bond to the central ionized carboxylate group. The hydroxy group forms an intermolecular hydrogen bond to a different central carboxylate group. In the potassium rubidium salt, the K+ and Rb+ cations are disordered over two sites, in approximately 0.72:0.28 and 0.28:0.72 ratios. KO8 and RbO9 coordination polyhedra share corners and edges to form a three‐dimensional framework with channels parallel to the a axis. The un‐ionized carboxylic acid group forms a strong charge‐assisted hydrogen bond to an ionized carboxylate group. The hydroxy group forms an intermolecular hydrogen bond to the central carboxylate group. Density functional theory (DFT) calculations on the ordered cation structures suggest that interchange of K+ and Rb+ at the two cation sites changes the energy insignificantly.  相似文献   

11.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

12.
Cisapride monohydrate (systematic name: 4‐amino‐5‐chloro‐N‐{(3RS,4SR)‐1‐[3‐(4‐fluorophenoxy)propyl]‐3‐methoxypiperidin‐4‐yl}‐2‐methoxybenzamide monohydrate), C23H29ClFN3O4·H2O, is a nondopamine‐blocking gastrokinetic drug. A new polymorph of cisapride monohydrate has been reported nearly three decades after the report of its first known crystal structure [Collin et al. (1989). J. Mol. Struct. 214 , 159–175]. The second polymorph is also monoclinic, but with different unit‐cell parameters. A comparison of both polymorphic forms shows that the difference is thus not in the molecular conformation but in the arrangements of molecules in the crystal packing. The crystal morphology of two forms was predicted with the BFDH model in Materials Studio and inferred that the powder of the new polymorph has better flowability than the original polymorph. The results of DSC (differential scanning calorimetry) analysis and slurry experiments show that both polymorphs are stable at room temperature.  相似文献   

13.
Two new polymorphs of the title compound, K[PtCl3(C6H15O4PS)], already known in the monoclinic form, were obtained by crystallization from acetone–n‐pentane solutions of different composition. Both polymorphs are ortho­rhom­bic in the space group P212121, with Z′ = 1 (solvent ratio 1:4) and 3 (solvent ratio 1:9). In both polymorphs, electrostatic inter­actions link K+ cations and [PtCl3(SMP)] anions [SMP is diethyl (methyl­sulfinyl­methyl)phosphonate] in infinite chains, while adjacent chains are held together by weak C—H⋯Cl and C—H⋯O hydrogen‐bond inter­actions.  相似文献   

14.
Single crystals of γ‐K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3], that are linked through eleven‐coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α‐ and γ‐phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3] ions separated by K+ cations. The existence of polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two‐dimensional but different three‐dimensional arrangements.  相似文献   

15.
Two polymorphs of the title compound, C5H5NO, (I), have been obtained from ethanol. One polymorph crystallizes in the monoclinic space group C2/c [henceforth (I)‐M], while the other crystallizes in the orthorhombic space group Pbca [henceforth (I)‐O]. In the two forms, the lattice parameters, cell volume and packing motifs are very similar. There are also two independent molecules of 4‐pyridone in each asymmetric unit. The molecules are linked by N—H...O hydrogen bonds into one‐dimensional zigzag chains extending along the b axis in the (I)‐M polymorph and along the a axis in the (I)‐O polymorph, with the graph set C22(12). The structures are stabilized by weak C—H...O hydrogen bonds linking adjacent chains, thus forming a ring with the graph set R65(28). The significance of this study lies in the analysis of the hydrogen‐bond interactions occurring in these structures. Analyses of the crystal structures of the two polymorphs of 4‐pyridone are helpful in elucidating the mechanism of the generation of spectroscopic effects observed in the IR spectra of these polymorphs in the frequency range of the N—H stretching vibration band.  相似文献   

16.
The ionic liquid 1‐butyl‐3‐methylimidazolium hydrogensulfate, [bmim]HSO4, turned out to be resistant even to strong oxidizers like SO3. Thus, it should be a suitable solvent for the preparation of polysulfates at low temperatures. As a proof of principle we here present the synthesis and crystal structure of K2(S2O7)(H2SO4), which has been obtained from the reaction of K2SO4 and SO3 in [bmim]HSO4. In the crystal structure of K2(S2O7)(H2SO4) (orthorhombic, Pbca, Z = 8, a = 810.64(2) pm, b = 1047.90(2) pm, c = 2328.86(6) pm, V = 1978.30(8) Å3) two crystallographically unique potassium cations are coordinated by a different number of monodentate and bidentate‐chelating disulfate anions as well as by sulfuric acid molecules. The crystal structure consists of alternating layers of [K2(S2O7)] slabs and H2SO4 molecules. Hydrogen bonds between hydrogen atoms of sulfuric acid molecules and oxygen atoms of the neighboring disulfate anions are observed.  相似文献   

17.
The crystal structures of K4BaSi3O9 and K4CaSi3O9 have been characterized by X‐ray diffraction techniques as well as Raman spectroscopy. The structure of K4CaSi3O9 has been refined from powder diffraction data via the Rietveld method using polycrystalline material prepared from solid state reactions. The compound is isostructural with form I of K4SrSi3O9. It crystallizes with 16 formula units in a cubic primitive cell (a = 15.94014(3) Å, V = 4050.20(1) Å3) and adopts space group . K4CaSi3O9 belongs to the group of cyclosilicates and contains highly puckered twelve‐membered [Si12O36]‐rings centered on the . Five of the seven crystallographically independent alkaline and alkaline earth cations are surrounded by six oxygen ligands in the form of distorted octahedra, which share opposite triangular faces and form non‐intersecting columns parallel to the body diagonals of the cubic unit cell. This arrangement corresponds to one of the cubic cylinder or rod packings. The two remaining sites have more irregular coordination environments with eight next oxygen neighbors. High temperature X‐ray powder diffraction data have been collected to determine the thermal expansion of this material: between room temperature and 700 °C the coefficient of thermal expansion has a value of α = 12.9(2) × 10?6 [°C?1]. Single crystals of K4BaSi3O9 have been obtained from the devitrification of a glass with the same composition. The structure was determined from a single crystal diffraction data set collected at ?100 °C and refined to a final R index of 0.0298 for 1288 observed reflections (I > 2σ(>I)). The compound is isostructural with modification II of K4SrSi3O9. Basic crystallographic data are as follows: space group Ama2, a = 11.0695(15) Å, b = 8.0708(10) Å, c = 11.905(2) Å, V = 1063.6(3) Å3, Z = 4. With respect to the silicate anions the material can be classified as a sechser single chain silicate. The crankshaft‐like chains run parallel to [100] and are linked by K and Ba cations, which are distributed among five crystallographically independent sites. The coordination polyhedra of two of the non‐tetrahedral cations can be described by distorted octahedra sharing opposite triangular faces. They build non‐intersecting columns parallel to [011] and [0‐11], respectively. The other sites exhibit more irregular coordination spheres with 7‐9 neighbours.  相似文献   

18.
A second polymorph of the hydrochloride salt of the recreational drug ethylone, C12H16NO3+·Cl, is reported [systematic name: (±)‐2‐ethylammonio‐1‐(3,4‐methylenedioxyphenyl)propane‐1‐one chloride]. This polymorph, denoted form (A), appears in crystallizations performed above 308 K. The originally reported form (B) [Wood et al. (2015). Acta Cryst. C 71 , 32–38] crystallizes preferentially at room temperature. The conformations of the cations in the two forms differ by a 180° rotation about the C—C bond linking the side chain to the aromatic ring. Hydrogen bonding links the cations and anions in both forms into similar extended chains in which any one chain contains only a single enantiomer of the chiral cation, but the packing of the ions is different. In form (A), the aromatic rings of adjacent chains interleave, but pack equally well if neighbouring chains contain the same or opposite enantiomorph of the cation. The consequence of this is then near perfect inversion twinning in the structure. In form (B), neighbouring chains are always inverted, leading to a centrosymmetric space group. The question as to why the polymorphs crystallize at slightly different temperatures has been examined by density functional theory (DFT) and lattice energy calculations and a consideration of packing compactness. The free energy (ΔG) of the crystal lattice for polymorph (A) lies some 52 kJ mol−1 above that of polymorph (B).  相似文献   

19.
Gabapentin [or 1‐(aminomethyl)cyclohexaneacetic acid], C9H17NO2, exists as a zwitterion [1‐(ammoniomethyl)cyclohexaneacetate] in the solid state. The crystal structures and bonding networks of two new monoclinic polymorphs (β‐gabapentin and γ‐gabapentin) are studied and compared with a previously reported gabapentin polymorph [α‐gabapentin: Ibers (2001). Acta Cryst. C 57 , 641–643]. All three polymorphs have extensive networks of hydrogen bonds between the NH3+ and COO groups of neighbouring molecules. In β‐gabapentin, there is an additional weak intramolecular hydrogen bond.  相似文献   

20.
A low‐temperature polymorph of 1,1′:3′,1′′:3′′,1′′′:3′′′,1′′′′‐quinquephenyl (m‐quinquephenyl), C30H22, crystallizes in the space group P21/c with two molecules in the asymmetric unit. The crystal is a three‐component nonmerohedral twin. A previously reported room‐temperature polymorph [Rabideau, Sygula, Dhar & Fronczek (1993). Chem. Commun. pp. 1795–1797] also crystallizes with two molecules in the asymmetric unit in the space group P. The unit‐cell volume for the low‐temperature polymorph is 4120.5 (4) Å3, almost twice that of the room‐temperature polymorph which is 2102.3 (6) Å3. The molecules in both structures adopt a U‐shaped conformation with similar geometric parameters. The structural packing is similar in both compounds, with the molecules lying in layers which stack perpendicular to the longest unit‐cell axis. The molecules pack alternately in the layers and in the stacked columns. In both polymorphs, the only interactions between the molecules which can stabilize the packing are very weak C—H...π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号