首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mimicking light‐harvesting and photoprotective processes of natural photosynthesis by artificial supramolecular systems is of considerable interest for artificial photosynthesis. The authors of the highlighted paper report on synthesis and spectroscopic characterization of a novel Pd‐phthalocyanine–carotenoid dyads that allow to directly follow the triplet–triplet energy transfer between Pd‐phthalocyanine and carotenoid. Unexpectedly, the T‐T energy transfer does not follow the dependence on conjugation length of the acceptor carotenoid. Instead, the donor–acceptor coupling and resulting T‐T energy transfer rate is controlled by the presence or absence of a methyl groups on the conjugated chain in the vicinity of the carotenoid keto‐oxygen. This reveals yet another level of tuning the spectroscopic properties of carotenoids having a conjugated keto group in their structure, underlining their potential for tailoring specific supramolecular complexes carrying out either light‐harvesting or photoprotective functions.  相似文献   

2.
Electronic interactions between the first excited states (S(1)) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S(1)-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S(1) state allowed sensitive monitoring of the flow of energy between Car S(1) and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S(1) and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S(1) → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S(1) energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S(1) state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S(1)-Pc Q(y) interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.  相似文献   

3.
A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S(1) signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S(1) state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)(1) Pc to Car S(1) energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between (1)Pc and Car S(1) and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment. These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.  相似文献   

4.
We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.  相似文献   

5.
Two artificial photosynthetic antenna models consisting of a Si phthalocyanine (Pc) bearing two axially attached carotenoid moieties having either 9 or 10 conjugated double bonds are used to illustrate some of the function of carotenoids in photosynthetic membranes. Both models studied in toluene, methyltetrahydrofuran, and benzonitrile exhibited charge separated states of the type C*+-Pc*- confirming that the quenching of the Pc S1 state is due to photoinduced electron transfer. In hexane, the Pc S1 state of the 10 double bond carotenoid-Pc model was slightly quenched but the C*+-Pc*- transient was not spectroscopically detected. A semiclassical analysis of the data in hexane at temperatures ranging from 180 to 320 K was used to demonstrate that photoinduced electron transfer could occur. The model bearing the 10 double bond carotenoids exhibits biexponential fluorescence decay in toluene and in hexane, which is interpreted in terms of an equilibrium mixture of two isomers comprising s-cis and s-trans conformers of the carotenoid. The shorter fluorescence lifetime is associated with an s-cis carotenoid conformer where the close approach between the donor and acceptor moieties provides through-space electronic coupling in addition to the through-bond component.  相似文献   

6.
Abstract— Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95±5% for spheroidene, 65±5% for 3,4-dihydrospheroidene and 60±10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0±0.5 μs. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60±5 μs. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.  相似文献   

7.
Abstract— The mechanism of action of xanthophyll cycle carotenoids in controlling the quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II (LHCIIb) has been investigated. Auroxanthin, a diepoxy carotenoid with 7 conjugated carbon double bonds, violaxanthin (9 conjugated double bonds) and zeaxanthin (11 conjugated double bonds) have been compared with regard to their effects in vitro on fluorescence quenching and LHCIIb oligomerization. It was found that auroxanthin stimulated fluorescence quenching, similar to the effect of zeaxanthin and in contrast to the inhibition caused by violaxanthin. Auroxanthin caused an increase in the oligomerization of LHCIIb and an increase in relative emission of long-wavelength fluorescence at 77 K. It is concluded that auroxanthin can mimic the effect of zeaxanthin on LHCII, strongly suggesting that the xanthophyll cycle carotenoids control quenching in vitro by an indirect structural effect and not by direct quenching of chlorophyll excited states.  相似文献   

8.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.  相似文献   

9.
Ultrafast transient laser spectroscopy has been used to investigate carotenoid singlet excited state energy transfer in various Rhodobacter (Rb.) sphaeroides reaction centers (RCs) modified either genetically or chemically. The pathway and efficiency of energy transfer were examined as a function of the structures and energies of the donor and acceptor molecules. On the donor side, carotenoids with various extents of pi-electron conjugation were examined. RCs studied include those from the anaerobically grown wild-type strain containing the carotenoid spheroidene, which has 10 conjugated carbon-carbon double bonds; the GA strain containing neurosporene, which has nine conjugated double bonds; and aerobically grown wild-type cells, as well as aerobically grown H(M182)L mutant, both containing the carbonyl-containing carotenoid spheroidenone, which has 11 conjugated double bonds. By varying the structure of the carotenoid, we observed the effect of altering the energies of the carotenoid excited states on the rate of energy transfer. Both S(1)- and S(2)-mediated carotenoid-to-bacteriochlorophyll energy transfer processes were observed. The highest transfer efficiency, from both the S(1) and S(2) states, was observed using the carotenoid with the shortest chain. The S(1)-mediated carotenoid-to- bacteriochlorophyll energy transfer efficiencies were determined to be 96%, 84%, and 73% for neurosporene, spheroidene, and spheroidenone, respectively. The S(2)-mediated energy transfer efficiencies follow the same trend but could not be determined quantitatively because of limitations in the time resolution of the instrumentation. The dependence of the energy transfer rate on the energetics of the energy transfer acceptor was verified by performing measurements with RCs from the H(M182)L mutant. In this mutant, the bacteriochlorophyll (denoted B(B)) located between the carotenoid and the RC special pair (P) is replaced by a bacteriopheophytin (denoted phi(B)), where the Q(X) and Q(Y) bands of phi(B) are 1830 and 1290 cm(-1), respectively, higher in energy than those of B(B). These band shifts associated with phi(B) in the H(M182)L mutant significantly alter the spectral overlap between the carotenoid and phi(B), resulting in a significant decrease of the transfer efficiency from the carotenoid S(1) state to phi(B). This leaves energy transfer from the carotenoid S(2) state to phi(B) as the dominant channel. Largely because of this change in mechanism, the overall efficiency of energy transfer from the carotenoid to P decreases to less than 50% in this mutant. Because the spectral signature of phi(B) is different from that of B(A) in this mutant, we were able to demonstrate clearly that the carotenoid-to-P energy transfer is via phi(B). This finding supports the concept that, in wild-type RCs, the carotenoid-to-P energy transfer occurs through the cofactor located at the B(B) position.  相似文献   

10.
Triplet‐triplet extinction coefficients for astaxanthin ( I ) and canthaxanthin ( II ) in different deaerated polarity solutions of MeCN and benzene were evaluated by laser flash photolysis at 298 K in the spectral region from 350 to 650 nm by energy transfer method, employing 2‐acetonaphthone as sensitizer. The triplet‐triplet extinction coefficients in MeCN and benzene were different in terms of the carotenoid present. The maximum triplet‐triplet extinction coefficient was 0.1–1.7×105 L·mol−1·cm−1 in different solvents. The rate constants of triplet decay were I : 1.25×1010 L·mol−1·s−1, II : 1.12×1010 L·mol−1·s−1 in MeCN; and I : 1.75×1010 L·mol−1·cm−1, II : 3.27×1010 L·mol−1·s−1 in benzene. The bimolecular rate constants of energy transfer from triplet excited 2‐acetonaphthone to carotenoids were determined from the linear regression of the decay rate constant of 2‐acetonaphthone triplet at varying carotenoid concentrations. The triplet lifetimes of 3AST* and 3CAN* in different solvents were also determined. The results indicated that triplet energy transfer was nearly diffusion‐controlled.  相似文献   

11.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.  相似文献   

12.
13.
The ultrafast internal conversion (IC) dynamics of seven C(40) carotenoids have been investigated at room temperature in a variety of solvents using two-color transient lens (TL) pump-probe spectroscopy. We provide comprehensive data sets for the carbonyl carotenoids canthaxanthin, astaxanthin, and-for the first time-echinenone, as well as new data for lycopene, beta-carotene, (3R,3'R)-zeaxanthin and (3R,3'R,6'R)-lutein in solvents which have not yet been investigated in the literature. Measurements were carried out to determine, how the IC processes are influenced by the conjugation length of the carotenoids, additional substituents and the polarity of the solvent. TL signals were recorded at 800 nm following excitation into the high energy edge of the carotenoid S2 band at 400 nm. For the S2 lifetime solvent-independent upper limits on the order of 100-200 fs are estimated for all carotenoids studied. The S1 lifetimes are in the picosecond range and increase systematically with decreasing conjugation length. For instance, in the sequence canthaxanthin/echinenone/beta-carotene (13/12/11 double bonds) one finds tau1 approximately 5, 7.7 and 9 ps for the S1-->S0 IC process, respectively. Hydroxyl groups not attached to the conjugated system have no apparent influence on tau1, as observed for canthaxanthin/astaxanthin (tau1 approximately 5 ps in both cases). For all carotenoids studied, tau1 is found to be insensitive to the solvent polarity. This is particularly interesting in the case of echinenone, canthaxanthin and astaxanthin, because earlier measurements for other carbonyl carotenoids like, e.g., peridinin partly showed dramatic differences. The likely presence of an intramolecular charge transfer state in the excited state manifold of C40 carbonyl carotenoids, which is stabilized in polar solvents, has obviously no influence on the measured tau1.  相似文献   

14.
The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car*) has been investigated by means of sub-microsecond time-resolved absorption spectroscopy both at physiological temperature (295 K) and at cryogenic temperature (77 K). Broad and asymmetric Tn←T-1 transient absorption was observed at room temperature following the photo-excitation of Car at 532 nm, which suggests the contribution from various carotenoid compositions having different numbers of conjugated C=C double bonds (Nc=c). The triplet absorption bands of different carotenoids, which superimposed at room temperature, could be clearly distinguished upon decreasing the temperature down to 77 K. At room temperature the shorter-wavelength side of the main Tn←T1 absorption band decayed rapidly to reach a spectral equilibration with a characteristic time constant of-1 μs, the same spectral dynamics, however, was not observed at 77 K. The  相似文献   

15.
Two carotenoid pigments have been linked as axial ligands to the central silicon atom of a phthalocyanine derivative, forming molecular triad 1. Laser flash studies on the femtosecond and picosecond time scales show that both the carotenoid S1 and S2 excited states act as donor states in 1, resulting in highly efficient singlet energy transfer from the carotenoids to the phthalocyanine. Triplet energy transfer in the opposite direction was also observed. In polar solvents efficient electron transfer from a carotenoid to the phthalocyanine excited singlet state yields a charge-separated state that recombines to the ground state of 1.  相似文献   

16.
采用飞秒时间分辨吸收光谱手段观测了在500和800 nm激发下高光培养的紫色光合细菌Rhodopseu-domonas(Rps). palustris外周捕光天线LH2(HL-LH2)中不同共轭链长类胡萝卜素(Carotenoid, 简称Car)和细菌叶绿素a(Bacteriachlorophyll a, 简称BChl a)的特征吸收光谱. 光谱动力学分析结果表明, HL-LH2中不同Car分子间可能存在复杂的单重激发态能量平衡过程, Car分子同时向BChl a分子发生多途径的单重激发态能量传递, B800主要接受来自Car的S2和S1态能量; B850则主要接受来自长共轭链Car(共轭双键数目n=13)的S1态和B800的激发态能量, 整个能量传递过程在3~5 ps内完成.  相似文献   

17.
The synthesis of two series of peptidic chains composed of bis(terpyridine)ruthenium(II) acceptor units and organic chromophores (coumarin, naphthalene, anthracene, fluorene) by stepwise solid‐phase peptide synthesis (SPPS) techniques is described. The first series of dyads comprises directly amide linked chromophores, while the second one possesses a glycine spacer between the two chromophores. All dyads were studied by UV/Vis and NMR spectroscopy, steady‐state luminescence, luminescence decay and electrochemistry, as well as by DFT calculations. The results of these studies indicate weak electronic coupling of the chromophores in the ground state. Absorpion spectra of all dyads are dominated by metal‐to‐ligand charge‐transfer (MLCT) bands around 500 nm. The bichromophoric systems, especially with coumarin as organic chromophore, display additional strong absorptions in the visible spectral region. All complexes are luminescent at room temperature (3MLCT). Efficient quenching of the fluorescence of the organic chromophore by the attached ruthenium complex is observed in all dyads. Excitation spectra indicate energy transfer from the organic dye to the ruthenium chromophore.  相似文献   

18.
Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.  相似文献   

19.
Multichromophoric dyes for use in tumor imaging have been synthesized and photophysically characterized. Structurally, these dyes are dyads and triads that consist of one or two carotenoid polyenes covalently attached to hematoporphyrin (HP) or hematoporphyrin dimethyl ester (HPDME) moieties via ester linkages. The ground-state absorption of each compound shows that the electronic interaction between the chromophores is small. The fluorescence quantum yield for the dyad monocar-oteno- HPDME is 0.033 and the dicaroteno-HPDME triads have yields between 0.016 and 0.007, all of which are reduced with respect to the parent compound HPDME (0.09). Global analysis of the transient fluorescence decays of the dyads and triads requires two exponential components (?5–6ns and ?1–2ns) to fit the data, while a single exponential component with a lifetime of 9.3 ns describes the decay data of the parent HPDME. Possible mechanisms for the observed porphyrin fluorescence quenching by the nearby carotenoid are discussed. Nanosecond transient absorption reveals a carotene triplet with maximum absorption at 560 nm and a 5.0 μs lifetime. No transient was detected at 450 nm, indicating rapid (10 ns) triplet energy transfer from the hematoporphyrin to the carotenoid moieties in fluid as well as in rigid media. The yield of triplet energy transfer from the porphyrin to the carotenoid moiety is unity. Singlet oxygen, O2(1δg), studies support the transient absorption data, as none of these compounds is capable of sensitizing O2(1δg). Liposome vesicles were used to study the photophysical characteristics of the dyes in phospholipid membranes. Singlet oxygen was not sensitized by the dyads and triads in liposomes. Transient absorption measurements suggest that the triads are substantially aggregated within the phospholipid bilayer, whereas aggregation in the dyads is less severe.  相似文献   

20.
Abstract— A new molecule consisting of a carotenoid polyene covalently linked to a pyropheophorbide has been prepared. This molecule exists in solution in an extended conformation with the carotenoid moiety relatively far from the tetrapyrrole π-electron system. The compound shows negligible antenna function (singlet energy transfer from carotenoid to pyropheophorbide), but substantial photoprotection from singlet oxygen production (due to rapid triplet energy transfer from pyropheophorbide to carotenoid). The photochemical properties of this molecule parallel those of conformationally similar carotenoporphyrins. Thus, carotenoporphyrins appear to be valid synthetic systems for modeling in vivo carotenoid-chlorophyll interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号