首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 149 毫秒
1.
采用溶胶-凝胶结合CO2超临界干燥的方法制备了钛硅复合氧化物(CTS)载体基质材料。以不同方法将Y型分子筛与CTS混合制得Y/CTS复合载体,以Ni、W为活性金属组分,采用等体积溶液浸渍法制备了加氢处理催化剂。考察了Y型分子筛与CTS的复合方式及加入量对催化剂加氢精制性能的影响,进而研究了P改性对Y/CTS结构及酸性的影响。结果表明,Y型分子筛的加入提高了CTS复合氧化物的酸性和比表面积,适当的分子筛加入量没有破坏CTS原有的结构。当Y型分子筛的加入量大于20%,Y/CTS的总酸量高于CTS,尤其是B酸量提高幅度较大, B酸强度也明显增加;Y/CTS载体中加入P以后,载体的总酸量增加,L酸的比例提高。以胜利焦化蜡油为原料,对催化剂的加氢反应性能评价结果表明,Y型分子筛的加入以及P对Y/CTS的改性,能够在一定程度上提高催化剂的加氢脱硫和加氢脱氮活性。  相似文献   

2.
以Ni、W为催化剂的活性金属组分,考察在金属组分浸渍液中加入有机络合剂对催化剂性质及加氢脱硫、脱氮性能的影响。结果表明,络合剂与金属组分共浸渍更有利于金属组分的分散;提高络合剂用量,既有利于提高主活性金属组分WO3在载体表面的分散,又能促进六配位八面体Ni物种及高加氢活性相NiWO3的形成;焙烧温度具有调变催化剂金属组分分散性及酸性的双重作用,在适宜的焙烧温度下制得的催化剂具有较好的酸性及加氢活性,主要表现为较高的加氢脱硫及脱氮活性。  相似文献   

3.
采用NiMoP浸渍液浸渍载体γ Al2O3制备了不同磷含量的NiMoP/Al2O3加氢处理催化剂。为了研究磷对该系列催化剂活性相结构的影响,用二苯并噻吩(DBT)和喹啉为模型化合物,考察了催化剂的加氢脱硫(HDS)和加氢脱氮(HDN)性能。结果表明,添加适当的磷能够提高催化剂的HDS和HDN活性,但是高含量的磷能显著的降低催化剂的催化性能。通过对催化剂进行XRD和HRTEM表征发现,添加磷能够增加MoS2的堆积层数以及Ⅱ型“Ni-Mo-S”相的相对含量,这是因为在制备过程中添加磷降低了活性组分与载体之间的相互作用。  相似文献   

4.
以γ-Al2O3为载体,采用浸渍法制备了不同P添加量的负载型NiW加氢催化剂,采用固定床加氢装置,对模型化合物萘和低温焦油富集的芳烃组分进行了催化加氢。催化剂采用N2吸附、XRD、H2-TPR、XPS以及NH3-TPD的方法进行表征,加氢产物采用GC-MS和GC×GC-TOFMS进行分析。结果表明,P助剂能够扩大催化剂的孔径并促进活性金属组分在载体表面的分散;当P含量为1.0%~1.5%时,能够促进Ni-W-O混合相生成,并提高催化剂表面弱酸的含量;萘加氢反应的转化率和十氢萘的选择性也在添加1.0%的P时达到最高,分别为80%和50%左右;低温焦油芳烃组分的催化加氢结果显示,芳烃饱和加氢反应占优,绝大部分芳烃转化为环烷烃,且催化剂具有显著的脱除杂原子效果。  相似文献   

5.
韩璐  周亚松  魏强  罗怡  王靖宇 《燃料化学学报》2014,42(10):1233-1239
以Ni、W为催化剂的活性金属组分,采用等体积浸渍法制备了NiW/Al2O3加氢脱氮催化剂,考察了Al2O3载体表面经硼酸修饰后对催化剂酸性的影响,以及活性金属与柠檬酸络合后对催化剂加氢反应性能的影响。NH3-TPD、HRTEM、H2-TPR、XPS等表征结果表明,Al2O3载体表面硼酸修饰增加了催化剂表面的中强酸量,减少了强酸量,且削弱了金属与载体之间的强相互作用,但活性中心数目减少。金属与柠檬酸络合可以减小活性相晶粒长度、提高活性相分散性及硫化程度。催化剂的反应评价结果表明,硼酸修饰与柠檬酸络合共同作用可以增强催化剂的重油加氢处理能力,促进芳环与胶质的加氢饱和;具有适宜的氢解与加氢活性,兼顾碱性氮与非碱性氮的脱除,体现了催化剂良好的重油加氢脱氮性能。  相似文献   

6.
采用程序升温还原(TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)表征手段对共浸渍法制备的不同磷含量NiMo/γ-Al2O3催化剂进行了表征,研究了磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响。TPR研究表明,磷能够减少四面体配位Mo物种的数量,增加八面体配位Mo物种的数量,促进高活性Ⅱ型"Ni-Mo-S"活性相的形成。HRTEM研究表明,随磷含量的增加,MoS2颗粒堆积层数增加,催化剂的加氢选择性提高;适量磷能够增加边角位有效Mo原子的分散度(fMo),增加催化剂表面加氢脱硫(HDS)和加氢脱氮(HDN)活性位的数量。上述结论得到了XPS表征的证实:适量磷增加了催化剂表面Mo原子浓度、提高有效助剂比率(PR)和提升比率(Ni/Mo),相应催化剂表现出最高的HDS和HDN活性;但过高磷含量能够引起MoS2颗粒过度堆积,片层长度过长,导致活性位数量减少,催化活性降低。  相似文献   

7.
在磷含量1.34%下,采用分步浸渍法按磷添加顺序不同制备了3种改性催化剂:MoP-Ni/Al2O3、Mo-NiP/Al2O3、Mo-Ni/PAl2O3.通过X射线衍射(XRD)、程序升温脱附(NH3-TPD)、程序升温还原(H2-TPR)、氮气吸附等技术对催化剂进行了表征.以新疆中低温煤焦油为原料,考察了不同磷改性方式对催化剂加氢脱氮(HDN)性能的影响.结果表明,适宜的磷添加方式能够改变催化剂的酸性分布,提高10~13 nm加氢脱氮有效孔的比例,并且减弱活性组分与载体的相互作用,同时使得活性组分更易被还原,进而提高催化剂加氢脱氮性能.加氢脱氮活性顺序为Mo-Ni/PAl2O3(74.36%)>Mo-NiP/Al2O3(72.74%)>Mo-Ni/Al2O3(71.72%)>MoP-Ni/Al2O3(56.13%).  相似文献   

8.
采用等体积浸渍法制备的改性活性焦(AC-N)负载Ni-Ce过渡金属催化剂可同时催化氨选择性催化还原(NH3-SCR)反应和CO氧化反应,实现低温富氧条件下NO和CO的一体化脱除。Ni-Ce/AC-N催化剂在175–250℃可实现NO和CO的高效转化,NO和CO转化率在175-250℃均高于95%。硝酸改性后活性焦载体与金属组分之间有更强烈的相互作用,有利于活性组分在催化剂表面更好的分散,提高催化剂的比表面积和氧化还原能力;Ni、Ce之间存在协同作用,使得催化剂表面出现更多的Ni2+和Ce3+,有利于催化活性提高。  相似文献   

9.
免预硫化的加氢脱硫MoNiP/Al2O3催化剂的制备和表征   总被引:2,自引:0,他引:2  
在Mo-Ni-P-O浸渍液中添加一定量的极性有机物如柠檬酸等,采用共浸渍法制备了一种不需预硫化和焙烧也具有较高加氢脱硫活性的MoNiP/Al2O3催化剂,并用N2吸附、程序升温还原、X射线光电子能谱、红外光谱和元素分析对催化剂进行了表征.结果表明,柠檬酸的添加削弱了金属组分与载体间的相互作用,有利于金属组分在载体表面的分散,且改善了催化剂的还原性,使催化剂在与含硫反应物料接触过程中自发硫化,从而有利于催化剂加氢脱硫活性的提高.  相似文献   

10.
孙厚祥  张化冰 《分子催化》2020,34(5):446-453
直接在AlPO4-5凝胶中加入Si和Sn2+源成功制备SAPO-5和SnSAPO-5分子筛。采用XRD、低温N2物理吸附、SEM、NMR、Py-IR、NH3-TPD等表征对分子筛物理化学性质进行分析。随Sn含量的增多,杂原子SnSAPO-5分子筛表面更光滑,外貌呈现更规则的六棱柱;Sn和Si更多的富集于表面;并且Sn2+同晶取代Al3+,骨架产生缺陷,电荷不平衡,进而产生更多的酸性位点。将分子筛用于NiW催化剂的改性,以脱除模拟油中二苯并噻吩(DBT)为探针,评价其改性加氢催化剂的加氢脱硫(HDS)反应性能。SnSAPO-5分子筛的添加在催化剂上引入了更多的酸性中心;改善载体与活性金属的相互作用;促进活性金属的硫化;形成更多的金属活性相,进而提高NiW催化剂的加氢脱硫能力。因而SnSAPO-5改性催化剂表现出比其他改性催化剂更好的HDS活性,具有良好的应用前景。  相似文献   

11.
超声波-微波法制备NiW/Al2O3加氢脱硫催化剂   总被引:12,自引:0,他引:12  
 采用一次浸渍技术制备了NiW/Al2O3加氢脱硫(HDS)催化剂,在制备过程中采用超声波处理浸渍液,采用微波进行样品干燥. 以噻吩为模型化合物,在微反装置上评价了该催化剂的加氢脱硫活性. 使用X射线光电子能谱和透射电镜等表征手段研究了催化剂的表面状态和物化性. 结果表明,使用超声波及微波技术制备的NiW/Al2O3催化剂具有较高的加氢脱硫活性,催化剂的活性组分较易硫化,可生成更多的硫化物种参与反应. 催化剂中硫化态钨的表面原子浓度较高,从而使硫化态钨物种保持较高的表面分散度,有利于增加活性中心的数目. 该催化剂的活性中心结构具有较多配位不饱和的边缘位和棱边位,因而具有较高的加氢脱硫活性.  相似文献   

12.
以水热法合成的一系列镁磷物质的量比不同的MgAPO-5分子筛为载体,采用等体积共浸渍的方法制备NiW/MgAPO-5催化剂。采用X射线衍射(XRD)、N_2物理吸附、扫描电子显微镜(SEM)、氨气程序升温脱附(NH_3-TPD)、吡啶吸附红外光谱(Py-FTIR)和氢气程序升温还原(H_2-TPR)对载体和负载型催化剂进行了表征。以四氢萘为模型化合物,在小型固定床上考察了不同镁磷物质的量比的催化剂加氢裂化制BTEX性能。结果表明,Mg/P(mol ratio)对MgAPO-5载体的晶相、镁含量、形貌和酸性质产生显著的影响,并且Mg~(2+)引入到了分子筛骨架。催化性能评价结果表明,NiW负载量相同时,四氢萘的转化率由载体MgAPO-5的酸强度决定,而BTEX的选择性在载体酸性和催化剂加氢组分相匹配处达到最优。当Mg/P(mol ratio)为0.05时,四氢萘的转化率最高,而BTEX的选择性则在Mg/P(mol ratio)为0.03时达到最大。  相似文献   

13.
以分步浸渍法在固定MoO_3、CoO含量(质量分数)为13.50%、2.11%的条件下,通过改变磷酸浓度,制备了不同P负载量的Co-Mo/γ-Al_2O_3催化剂。考察了不同的P负载量催化剂对内蒙古赤峰中温煤焦油加氢脱硫性能的影响。并以NH3程序升温脱附(NH_3-TPD)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段对催化剂的结构性质进行了表征。结果表明,适宜的P负载量可减弱活性组分与载体间的相互作用,利于活性组分均匀分散在载体表面,改善了催化剂的还原、硫化性能和酸性分布,从而提高了催化剂的加氢脱硫活性。当磷酸质量分数为4%时,催化剂表现出最佳的加氢脱硫性能,硫脱除率达到96.98%。不同P负载量Co-Mo/γ-Al_2O_3催化剂加氢脱硫活性对应的磷酸浓度顺序为:4%2%6%1%08%。  相似文献   

14.
The catalytic activity of CoMoS /CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol /L HNO_3. The CNT were loaded with 12% MoO_3( by weight) and 0.7 Co /Mo atomic ratio with impregnation methods. The γ-Al_2O_3 catalyst was also prepared by impregnation method to compare both catalysts activities.The analysis tools such XRD,Raman spectroscopy,TEM,and BET were used to characterize the catalysts. The autoclave reactor was used to operate the hydrotreating experiments. The hydrotreating reactions were tested at various operating conditions of temperature 325-375 ℃,pressure 2-6 MPa,time 2-6 h,and catalyst /oil ratio( by weight) of 1 ∶75,1 ∶33 and 1 ∶10. The results revealed that the CoMoS /CNT was highly efficient for the hydrotreating more than the CoMoS /γ-Al_2O_3. Also, the hydrodesulfurization( HDS) increased with increasing catalyst /oil ratio. Additionally,results showed that the optimum condition was temperature 350℃,pressure 4 MPa,catalyst /oil ratio of 1 ∶75 for 2 h. Furthermore,even at low CoMoS /CNT catalyst /oil ratio of 1 ∶75,an acceptable HDS of 77.1% was achieved.  相似文献   

15.
Guo  Fang  Li  Jun  Li  Wanxi  Chen  Xiuling  Qi  Hongxue  Wang  Xiaoxiao  Yu  Yue 《Russian Journal of Applied Chemistry》2017,90(12):2055-2063

Al-MCM-41 materials were prepared with different Al contents and used as supports for NiW catalysts. The supports and catalysts were characterized by XRD, N2 adsorption-desorption, XPS, Raman, H2-TPR techniques. The XPS result showed that the Al added to MCM-41 promoted the dispersion of W and Ni species. The Raman result showed that the Al added to MCM-41 favored the formation of the suitable W species. The H2-TPR result showed that the Al added to MCM-41 can reduce the reduction temperature of W species on the catalysts. The hydrodenitrogenation (HDN) results showed that the HDN activity followed the order of NiW/Al-2 > NiW/Al-1 > NiW/Al-4 > NiW. Moreover, this tendency was also valid for the ratio of propylcyclohexane/propylbenzene (PCH/PB). The high HDN activity and PCH/PB ratio of NiW/Al-2 are due to the well dispersion of the W and Ni species, the suitable W species and the low reduction temperature of W species.

  相似文献   

16.
This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 NiW-ZSM-5/MCM-41 Ni-ZSM-5/MCM-41 Mo-ZSM-5/MCM-41 W-ZSM-5/MCM-41 NiMo-ZSM-5 NiW-ZSM-5 ZSM-5/MCM-41 ZSM-5 MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P 0.05) at 95% confidence level,evaluated by SPSS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号