首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用水热法制备了介孔MgO作为催化剂的载体,并制备了介孔Ni/MgO催化剂。利用N2吸附-脱附、XRD、H2-TPR等对样品进行表征,并考察了介孔Ni/MgO催化水蒸气重整糠醛、生物质油模型物和两种商用生物质油制氢的活性。结果表明,在介孔Ni/MgO催化剂催化水蒸气重整糠醛制氢反应中,随着反应温度的提高,水蒸气重整糠醛中糠醛的转化率、氢气的产率和氢气的选择性,都呈现递增的趋势。在反应温度提高到600℃时,糠醛的转化率和氢气的产率分别达到94.9%和83.2%。Ni/MgO催化水蒸气重整二组分模拟生物质油,糠醛/乙酸、糠醛/羟基丙酮制氢的反应中,氢气的产率分别达到87.3%和86.8%,均高于水蒸气重整糠醛反应中氢气的产率。由此表明,乙酸或羟基丙酮的存在,提高了模拟生物质油中主要有机物组分糠醛的转化率,并相应地提高了氢气的产率。在水蒸气重整商用生物质油制氢反应中,随着反应物水碳比(S/C(molar ratio)=5、10、15、20、25)的提高,主要有机物的转化率、氢气的产率和选择性呈现出增加的趋势。在水碳比为20时,两种生物质油的主要有机...  相似文献   

2.
利用共沉淀法,制备一系列在凹凸棒土上负载不同含量的NiO-Fe2O3催化剂。以乙酸、乙醇和苯酚的水溶性溶液为生物油模型物,在自制的三段式固定床反应器中,考察了NiO-Fe2O3的负载量、反应温度、水碳比(S/C)对生物油模型物重整制氢的影响。结果表明,所获得的氢气产率最高的工艺条件为,在650℃条件下,以水碳比8~10的生物油模型为实验原料,使用自制的50%NiO-50%Fe2O3/PG型催化剂,可使气体产物中H2的相对含量达到最大66.15%。  相似文献   

3.
制备了Ni/Al2O3、Ni-Cu/Al2O3、Ni-Co/Al2O3和Ni-Co-Cu/Al2O3催化剂,研究了Co和Cu对生物油水蒸气催化重整的影响。实验表明,Co 能促进水汽变换(WGS)反应,提高氢气的产率,Cu能抑制反应中焦炭的形成,提高催化剂的稳定性。对催化剂Ni-Co-Cu/Al2O3进行工艺条件考察,当900 ℃、水油比为6 g/g、质量空速(WHSV)为1 h-1时,碳选择性达到87.5%,氢气产率达到84.2%,潜在氢气产率达到92.4%。  相似文献   

4.
在流化床反应器中考察了含氧/水蒸气气氛中煤在850 ℃下的热解特性,包括产物分布特性及生成的半焦与焦油的反应性,研究了温度、过量空气比(Equivalence ratio: ER)和水蒸气/煤比(S/C, 质量比)的影响。结果表明,随热解温度、ER和S/C质量比的增加,气体产率增加,而半焦和焦油产率减少。O2的加入使CO2、CO含量明显增加,H2含量降低。O2和水蒸气的加入使半焦的比表面积显著增加,半焦气化活性增强,但半焦在900 ℃和 ER 为0.22的条件下出现轻微石墨化,降低了其气化活性。同时,反应气氛中含有O2和水蒸气对焦油的性质有显著影响,与单纯的N2气氛相比,O2和水蒸气的存在使热解焦油中单环芳烃、酮类、酚类、脂肪烃都明显减少,这对于焦油的进一步裂解及重整更加有利。  相似文献   

5.
为强化生物质气化过程中焦油转化和氢气富集,提出了一种新型解耦双回路气化系统(DDLG) 。该气化系统将气化过程解耦为燃料气化、焦油重整和半焦燃烧三个子过程,分别发生于三个独立的反应器,即气化反应器、重整反应器和燃烧反应器。其中,气化反应器和重整反应器并行布置,分别与燃烧反应器相连,形成两个平行的且可独立控制的双循环回路。以松木屑为原料及兼作为原位焦油重整催化剂的煅烧橄榄石为循环固体热载体,考察了反应条件对 DDLG 中松木屑气化性能的影响。结果表明,重整反应器从气化反应器中解耦,并辅以橄榄石催化剂,可实现焦油高效转化脱除。如气化反应器700℃、重整反应器 850℃和水蒸气与原料中碳的质量比(S/C) 1.2 反应条件下,产品气中焦油含量降低至13.9g /m~3,气体产率和H_2分别达到1.0m~3 /kg,和38.8%。  相似文献   

6.
以硝酸盐为前驱体,CNTs为载体,采用简单浸渍法制备了一系列不同NiO含量的催化剂3Ni-CNTs、 5Ni-CNTs、 10Ni-CNTs和15Ni-CNTs(NiO含量分别为3.0%、 5.0%、 10.0%和15.0%),通过X-射线衍射(XRD)、氢气程序升温还原(H2TPR)、氢气程序升温脱附(H2TPD)、 X-射线光电子能谱(XPS)和透射电镜(TEM)对其物理化学性质进行了分析,并考察其对甘油水蒸气重整反应的影响。结果表明:15Ni-CNTs的催化性能最好,在375 ℃条件下,甘油转化率和氢气选择性分别为100%和72.9%。  相似文献   

7.
采用海泡石(SEP)为载体,通过化学沉淀法制备了Co/SEP和Co-Ce/SEP催化剂,对催化剂进行X射线衍射(XRD)、H2-程序升温还原(H2-TPR)和透射电镜(TEM)等表征。结果表明,Ce的加入显著改善催化剂的分散度和还原性;两种催化剂应用于乙醇重整制氢实验,考察Ce的加入、反应时间、反应温度和水碳比(S/C比)对制氢的影响。结果表明,在WHSV为20.5h-1,水碳比(S/C)为3,反应温度600℃时,Co-Ce/SEP乙醇转化率和氢气产率达到最高,分别为85%和65%。同时Ce的添加能使Co-Ce/SEP拥有更优的活性和稳定性。  相似文献   

8.
采用浸渍法制备了Ni、Mg双金属负载在堇青石表面形成的蜂窝状催化剂,研究了焙烧温度对催化剂结构和生物质粗燃气重整反应性能的影响.结果表明,在不同焙烧温度下主要有NiO和NiMgO2固溶体物相生成.相比于其他焙烧温度,催化剂在650 ℃焙烧温度下更有利于镍活性金属位的分散和活性位数量的增加.在干重整反应条件下,CH4、CO2的转化率以及H2、CO产率随焙烧温度的升高呈现先增加后降低的变化趋势,在650 ℃焙烧温度下达到最高.在水蒸气重整反应条件下主要发生烃类产物与H2O和CO2的重整反应以及水煤气变换反应,焙烧温度的升高有利于水煤气反应的进行.此外,焙烧温度对于干重整反应条件下的H2/CO体积比调节影响较小,而对于水蒸气重整反应条件下的H2/CO体积比可进行选择性调节.  相似文献   

9.
两段式固定床富氧-水蒸气气化实验研究   总被引:2,自引:0,他引:2  
以玉米芯颗粒为原料在两段式固定床气化装置上进行了气化实验,考察了当量比ER、富氧浓度OC和水蒸气配比S/B对气化温度、气化气组分、低位热值、气体产率、气化效率和碳转化率等参数的影响,并比较了两段式固定床与传统下吸式固定床的气化特性。实验结果表明,当量比为0.27时H2的体积分数、CO的体积分数和气化效率达到最大值;增加富氧浓度能优化气化效果,但富氧浓度大于90%后,燃气质量和气化效率均提高不大;增加S/B能提高H2的体积分数,但同时会降低CO的体积分数、气体热值、气化效率;当S/B为0.6时,氢气的体积分数达最高值33.3%,H2/CO比为1.32;相比于传统固定床,两段式固定床气化可明显提高气化温度、氢气的体积分数、碳转化率和气化效率,降低焦油含量。  相似文献   

10.
采用共浸渍薄水铝石(AlOOH)方法制备了一系列Ni/MgO/Al2O3催化剂, 并采用N2气吸附及X射线衍射等手段进行了表征. 选择1-甲基萘作为焦油模型化合物, 研究了该催化剂催化转化具有较低水蒸气/碳摩尔比(nH2O/nC) 的高温焦炉煤气(COG)中焦油催化反应性能. 考察了催化剂中MgO含量及反应条件等对催化剂性能的影响. 实验结果表明, 在775 ℃和nH2O/nC=0.7条件下, MgO改性的Ni/MgO/Al2O3催化剂对1-甲基萘催化转化为小分子气体反应具有较好的催化活性和稳定性; 热重分析表明, MgO的加入能显著提高催化剂的抗积炭能力. 在Ni/MgO/Al2O3催化剂上, 反应气中高浓度H2S气体(0.25%, 体积分数)能够促进焦油催化转化为小分子气体, 这可能是由于H2S在Ni表面的可逆吸附形成更适合于重整反应的活性位, 同时抑制了烷烃裂解吸附形成的碳在金属中的溶解、扩散并最终形成积炭过程.  相似文献   

11.
在固定床反应器中,以甲苯作为生物质气化焦油模型化合物,橄榄石作为甲苯裂解催化剂,结合XRD、SEM、BET、H2-TPR等表征手段,考察了不同重整反应温度、CO_2浓度、橄榄石煅烧温度以及载镍量对甲苯催化重整性能的影响。结果表明,甲苯转化率随着重整反应温度的升高而增加,橄榄石对甲苯具有较高的催化活性,经900℃煅烧后的橄榄石活性最高。相比于橄榄石直接催化裂解甲苯,CO_2的加入能够显著降低催化剂表面的积炭率,当CO_2/C_7H_8物质的量比为4时,橄榄石催化剂表面的积炭率降低至17.0%。橄榄石载镍后,对C_7H_8/CO_2的催化重整性能进一步提高,甲苯转化率最高达到99.4%,但是积炭率也会随之增加。  相似文献   

12.
对甲烷自热重整进行了系统的热力学分析,并采用预混合层流模型结合甲烷氧化、蒸汽重整、干重整机理对反应过程进行了动力学分析。结果表明,甲烷自热重整的平衡产物及其浓度主要受温度、O2/CH4、H2O/CH4的影响;压力影响不是十分明显,主要影响达到平衡的速度。在715℃~730℃、压力0.7MPa~1.0MPa,控制O2/CH4在0.60~0.70、H2O/CH4在3.15~3.25,可以得到H2>68%、CO<10%的产物气,积炭率接近于0。动力学分析表明,自热重整过程分为两个主要阶段进行,在起始阶段主要发生甲烷氧化反应,产物主要为H2O和CO2;第二阶段以甲烷蒸汽重整反应为主,伴随水气变换反应(WGS)和微弱的干重整,H2CO和CO2为主要产物。调节初始水浓度可以控制快速氧化阶段反应速率,避免“热点”出现,抑制CO的生成。  相似文献   

13.
生物质焦油模型化合物催化转化实验研究   总被引:4,自引:1,他引:3  
以苯和甲苯为焦油的模型化合物,在固定床反应器上研究了堇青石和白云石两种催化剂作用下,温度、蒸汽量和空速对焦油催化转化的影响。结果表明,苯和甲苯的转化率都随温度的提高和空速的降低而升高。在堇青石和白云石催化作用下,甲苯在裂解温度900℃,S/C摩尔比为1.5时转化率最高,转化率均达到95%。苯在裂解温度900℃,S/C摩尔比为1.0时转化率最高,转化率分别为61%和53%。蒸汽量的增大有助于裂解气体成分的调整。堇青石稳定性实验表明,积炭是造成催化剂活性降低的重要原因。  相似文献   

14.
Time profiles of weight change of coal samples and the evolution of low molecular weight gases (H2, CH4, CO and CO2) in both steam gasification and pyrolysis of Yallourn brown coal and Taiheiyo subbituminous coal were measured using a thermobalance reactor with a micro GC and a mass spectrometer, in order to examine the reaction mechanism of steam gasification with rapid heating (100 K s−1). It was found that, in the case of slow heating, steam reacted with metaplast and promoted the evolution of tar above 623 K and that a water shift reaction took place above 873 K. Steam gasification of produced char occurred above 1023 K, increasing the evolution of CO, CO2 and H2. When the heating rate was high, steam reforming of volatile matter and steam gasification of metaplast took place parallel to metaplast formation and condensation. The char produced by pyrolysis was almost completely gasified and converted into H2 and CO2 by steam. The chemical energy of coal was mainly converted into hydrogen energy and the gasification efficiency was slightly increased by rapid heating (i.e. 100 K s−1).  相似文献   

15.
气化介质对生物质多孔床料流化床气化产气特性的影响   总被引:1,自引:0,他引:1  
在自制小型常压流化床内采用多孔介质为床料,对生物质进行气化实验,分别考察了富氧气氛下温度和氧气浓度、水蒸气气氛下温度和水蒸气流量及不同种类床料对生物质产气特性的影响。结果表明,多孔床料下气化产气中可燃气体积分数随气化温度的提高而增大;随氧气浓度的增加,产气中H2的体积分数从14.52%增加到19.71%,CO的体积分数从43.41%降低到36.41%;气化剂水蒸气流量对生物质气化影响存在最佳范围;多孔床料种类不同对H2和CO的生成以及对低碳氢化合物(CxHy)的催化裂解强度的促进作用也不同。  相似文献   

16.
在φ80×3 000mm耐高温不锈钢管气流床反应器中,以150-180μm胜利褐煤为气化原料,考察了800和900℃时添加氧气前后褐煤转化率的变化,研究了氧化反应对水蒸气气化反应影响的宏观特征。结果表明,添加氧气后褐煤转化率明显大于O_2和H_2O气氛下褐煤转化率之和,即向水蒸气气氛添加氧气后褐煤转化率的增幅大于氧气氧化作用导致的褐煤转化率的增幅,随着H_2O含量增大以及温度的升高此现象愈加明显。该协同作用主要是氧化反应对水蒸气气化反应的促进作用造成的。利用φ40×200 mm石英圆筒流化床反应器进行了类似的实验,也发现了该协同作用。同时,借鉴收缩核模型并结合气流床气化实验条件推导了水蒸气气化宏观动力学方程,得到的速率方程(Z-(1-x))~(1/3)=(tβk_(H_2O)/Rρ_C)φ_(H_2O)=K_(H_2Oφ_(H_2O))与实验值吻合较好,添加氧气后水蒸气气化反应速率和水蒸气气化反应表观速率常数K_(H_2O)明显增大,这是氧气对水蒸气气化反应促进作用的动力学特征。  相似文献   

17.
生物油水溶性组分的水蒸气催化重整制氢实验研究   总被引:4,自引:1,他引:3  
利用固定床反应器对生物油水溶性组分重整制氢反应进行了考察,研究了温度、吸收剂的加入对反应过程的影响。结果表明,在常压条件下生物油水溶性组分的最佳重整温度为800℃,此时H2体积分数为60%、CO体积分数为10%。加入CO2吸收剂后,H2体积分数提高了25%,H2产率提高了10%。在常压条件下,以CaO作为吸收剂时,最佳的反应温度为600℃,此时H2体积分数最高可达85%。650℃时CaO对CO2的吸收能力减弱导致其对生成H2反应的促进作用急剧降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号