首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local quantum theory is applied to the study of the momentum operator in atomic systems. Consequently, a quantum-based local momentum expression in terms of the single-electron density is determined. The limiting values of this function correctly obey two fundamental theorems: Kato's cusp condition and the Hoffmann-Ostenhof and Hoffmann-Ostenhof exponential decay. The local momentum also depicts the electron shell structure in atoms as given by its local maxima and inflection points. The integration of the electron density in a shell gives electron populations that are in agreement with the ones expected from the Periodic Table of the elements. The shell structure obtained is in agreement with the higher level of theory computations, which include the Kohn-Sham kinetic energy density. The average of the local kinetic energy associated with the local momentum is the Weizsacker kinetic energy. In conclusion, the local representation of the momentum operator provides relevant information about the electronic properties of the atom at any distance from the nucleus.  相似文献   

2.
A variational formula for the momentum density is derived by using the Hellmann-Feynman theorem and by introducing a reference system whose Hamiltonian differs only in the kinetic energy part from that of the original system. As simple applications of the present results, the reduced mass correction and the relativistic correction for the hydrogen-like atom are discussed.  相似文献   

3.
The entropy of an electronic system is defined in terms of the Husimi function, a nonnegative distribution function in phase space. The Husimi function is calculated by maximizing the entropy subject to the constraints that the Husimi function give a Gaussian convolution of the desity when integrating over the momentum coordinates and that its second moment with respect to momentum give a sum of Gaussian convolutions of the density and the kinetic energy density. The result is compared with the Wigner function. Equations are given for calculating the density matrix from the Husimi function. The resulting equation for the exchange energy requires a difficult numerical integration. An alternate method is used to obtain the density matrix from an approximate partially collapsed Husimi matrix that gives the maximum entropy Husimi function as its diagonal. The results are exact for the harmonic oscillator ground state. Exchange energies calculated for H and the He isoelectronic series through C+4 show slight improvements over those calculated using a maximum entropy Wigner function.  相似文献   

4.
There is a number of explicit kinetic energy density functionals for noninteracting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work, we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing us to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the Laplacian of the electron density to work with an infinite set of kinetic energy densities. For all but one of the functionals, we have found that their success in the evaluation of the total kinetic energy is due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.  相似文献   

5.
A direct application of the Hirshfeld atomic partitioning (HAP) scheme is implemented for molecular electron momentum densities (EMDs). The momentum density contributions of individual atoms in diverse molecular systems are analyzed along with their topographical features and the kinetic energies of the atomic partitions. The proposed p-space HAP-based charge scheme does seem to possess the desirable attributes expected of any atoms in molecules partitioning. In addition to this, the main strength of the p-space HAP is the exact knowledge of the kinetic energy functional and the inherent ease in computing the kinetic energy. The charges derived from HAP in momentum space are found to match chemical intuition and the generally known chemical characteristics such as electronegativity, etc.  相似文献   

6.
Rigorous definitions are presented for the kinematic angular momentum K of a system of classical particles (a concept dual to the conventional angular momentum J), the angular momentum L(xi) associated with the moments of inertia, and the contributions to the total kinetic energy of the system from various modes of the motion of the particles. Some key properties of these quantities are described-in particular, their invariance under any orthogonal coordinate transformation and the inequalities they are subject to. The main mathematical tool exploited is the singular value decomposition of rectangular matrices and its differentiation with respect to a parameter. The quantities introduced employ as ingredients particle coordinates and momenta, commonly available in classical trajectory studies of chemical reactions and in molecular dynamics simulations, and thus are of prospective use as sensitive and immediately calculated indicators of phase transitions, isomerizations, onsets of chaotic behavior, and other dynamical critical phenomena in classical microaggregates, such as nanoscale clusters.  相似文献   

7.
A postulate is enunciated involving the construction of the quantum mechanical linear momentum vector in position space. This proposal leads to a coherent Heisenberg uncertainty relation for a Gaussian model density function. Such result is then used as starting point to obtain algorithms to perform kinetic energy calculations, when only the density function of a given system is known. The general theoretical framework is described and several density function types, including ab initio formulation, are used as application examples.  相似文献   

8.
We generalize the ideas behind the procedure for the construction of kinetic energy density functionals with a nonlocal term based on the structure of the von Weizs?cker functional, and present several types of nonlocal terms. In all cases, the functionals are constructed such that they reproduce the linear response function of the homogeneous electron gas. These functionals are designed by rewriting the von Weizs?cker functional with the help of a parameter β that determines the power of the electron density in the expression, a strategy we have previously used in the generalization of Thomas-Fermi nonlocal functionals. Benchmark calculations in localized systems have been performed with these functionals to test both their relative errors and the quality of their local behavior. We have obtained competitive results when compared to semilocal and previous nonlocal functionals, the generalized nonlocal von Weizs?cker functionals giving very good results for the total kinetic energies and improving the local behavior of the kinetic energy density. In addition, all the functionals discussed in this paper, when using an adequate reference density, can be evaluated as a single integral in momentum space, resulting in a quasilinear scaling for the computational cost.  相似文献   

9.
Inrecentdecades,greatprogresshasbeenmadeinthedensityfunctionaltheoryanditsapplications.HohenbergKohntheoremisitsbasis.Takingtheoneelectrondensityasafundamentalvariable,thistheorytreatsthetotalenergyE[ρ]oftheelectronicgroundstateforamoleculeasafunctional…  相似文献   

10.
The method of momentum electron density for interatomic interactions has been applied to the two lowest σ states of the H 2 + system. For attractive (1sσg) and repulsive (2pσ u ) interactions, the behaviour of momentum density and its effect on the stabilization energy of the system are examined quantitatively. The concept of contraction and expansion of the momentum density is shown to form an important guiding principle in this approach. The origin of covalent bonding is discussed based on the energy partitioning proposed previously.  相似文献   

11.
To understand how the internal and rotational motions of a polyatomic system depend on which rotating system of axes is selected, we derived the explicit form of the atomic velocities determined by an observer stationed on the general rotating system of axes. Using the derived velocities, we formulated the kinetic energy expression for vibration–rotation motions with respect to the rotating system of axes. From this expression, we clarified covariant metric tensors under zero angular momentum, which have been confused with an erroneous expression even in the professional literature, and the relationship between the kinetic energy expression and the rotating system of axes. Furthermore, to simplify the Hamiltonian form, we introduced quasirectilinear vibrational coordinates to describe the Hamiltonian. The resulting Hamiltonian form is superior to those of the previous studies in that the kinetic and potential energy expressions are simple and the vibrational frequencies are independent of the original internal coordinates used. In fact, we show that its application for three examples is useful. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 22–29, 2001  相似文献   

12.
An efficient angular momentum method is presented and used to derive analytic expressions for the vibration-rotational kinetic energy operator of polyatomic molecules.The vibration-rotational kinetic energy operator is expressed in terms of the total angular momentum operator J,the angular momentum operator J and the momentum operator p conjugate to Z in the molecule-fixed frame Not only the method of derivation is simpler than that in the previous work,but also the expressions ot the kinetic energy operators arc more compact.Particularly,the operator is easily applied to different vibrational or rovibrational problems of the polyatomic molecules by variations of matrix elements Gn of a mass-dependent constant symmetric matrix  相似文献   

13.
14.
The vibration-rotational kinetic energy operators of four-particle system in various coordinates are derived using a new and simple angular momentum method. The operators are respectively suitable for studying the systems described by scattering coordinate, valence coordinate, Radau coordinate, Radau/Jacobi and Jacobi/valence hybrid coordinates and so on. Certain properties of these operators and their possible applications are discussed.  相似文献   

15.
We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson’s stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsäcker term and an (N?1)-electron kinetic correlation term. We further show that the Weizsäcker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. We then write the N-electron classical kinetic energy as the sum of the (one-electron) classical kinetic energy and another (N?1)-electron kinetic correlation term. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsäcker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase, and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases. Finally, we underline that, although our aim in this paper is conceptual rather than practical, our results are potentially useful for the construction of improved kinetic-energy functionals.  相似文献   

16.
The translational kinetic energy release distribution (KERD) for the halogen loss reaction of the bromobenzene and iodobenzene cations has been reinvestigated on the microsecond time scale. Two necessary conditions of validity of the orbiting transition state theory (OTST) for the calculation of kinetic energy release distributions (KERDs) have been formulated. One of them examines the central ion-induced dipole potential approximation. As a second criterion, an adiabatic parameter is derived. The lower the released translational energy and the total angular momentum, the larger the reduced mass, the rotational constant of the molecular fragment, and the polarizability of the released atom, the more valid is the OTST. Only the low-energy dissociation of the iodobenzene ion (E approximately 0.45 eV, where E is the internal energy above the reaction threshold) is found to fulfill the criteria of validity of the OTST. The constraints that act on the dissociation dynamics have been studied by the maximum entropy method. Calculations of entropy deficiencies (which measure the deviation from a microcanonical distribution) show that the pair of fragments does not sample the whole of the phase space that is compatible with the mere specification of the internal energy. The major constraint that results from conservation of angular momentum is related to a reduction of the dimensionality of the dynamics of the translational motion to a two-dimensional space. A second and minor constraint that affects the KERD leads to a suppression of small translational releases, i.e., accounts for threshold behavior. At high internal energies, the effects of curvature of the reaction path and of angular momentum conservation are intricately intermeddled and it is not possible to specify the share of each effect.  相似文献   

17.
The concrete molecule-fixed (MF) kinetic energy operator for penta-atomic molecules is expressed in terms of the parameterδ, the matrix element G_(?), and angular momentum operator (?). The applications of the operator are also discussed. Finally, a general compact form of kinetic energy operator suitable for calculating the rovibrational spectra of polyatomie molecules is presented.  相似文献   

18.
The integrated Hellmann-Feynman theorem is used to derive a rigorous relation between the energy and the electron density in momentum space. Choosing the electron mass as a differential parameter, we obtain a formula corresponding to the Wilson-Frost formula in coordinate space. Analysing the mass-dependence of momentum density, we then show that the present formula is equivalent to one of the previous results deduced from the virial theorem. Use of the integral Hellmann-Feynman theorem is also discussed. Several illustrative examples are given for the calculation of energy from momentum density.  相似文献   

19.
This paper gives a critical review of the physical meaning of the chemical potential, perhaps the most abstract of all thermodynamic quantities. To show its basic behavior, thereby to illustrate its physical significance, we have derived the chemical potential of a system of free electrons as a function of the density and temperature in different spatial dimensions. We have shown how to obtain the isothermal compressibility given the chemical potential. To emphasize the usefulness of the knowledge of dimensional dependence, both the compressibility and average kinetic energy are expressed as simple dimensional relationships of the density and, hence, the chemical potential. Finally, there is a certain temperature at which the chemical potential should identically vanish. Physical implications of zero chemical potential are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号