首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with a theoretical (numerical) analysis of the effects that blowing/injection and suction have on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the cylinder. Both cases of buoyancy forces aid and oppose the development of the boundary layer are considered. Similarity equations are derived and their solutions are dependent upon the mixed convection parameter, the non-dimensional transpiration parameter and the curvature parameter, as well as of the Prandtl number. Dual solutions for the previously studied mixed convection boundary layer flows over an impermeable surface of the cylinder are shown to exist also in the present problem for aiding and opposing flow situations.  相似文献   

2.
In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a transverse uniform magnetic field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions. In addition, we demonstrate that the previously reported analytical solutions for the temperature field given in terms of Kummer's function do not converge at the boundary. We provide a graphical and numerical demonstration of the convergence of the HAM solutions and tabulate the effects of various parameters on the skin friction coefficient and wall heat transfer.  相似文献   

3.
In this paper, the problem of steady magnetohydrodynamic boundary layer flow and heat transfer of a viscous and electrically conducting fluid over a stretching sheet is studied. The effect of the induced magnetic field is taken into account. The transformed ordinary differential equations are solved numerically using the finite-difference scheme known as the Keller-box method. Numerical results are obtained for various values of the magnetic parameter, the reciprocal magnetic Prandtl number and the Prandtl number. The effects of these parameters on the flow and heat transfer characteristics are determined and discussed in detail. When the magnetic field is absent, the closed analytical results for the skin friction are compared with the exact numerical results. Also the numerical results for the heat flux from the stretching surface are compared with the results reported by other authors when the magnetic field is absent. It is found that very good agreement exists.  相似文献   

4.
The separated flow past a transverse barrier on a plate surface is modeled in a wind tunnel. The linear stability of the two-dimensional laminar flow in the separation zone is investigated in the presence of a stationary disturbance imposed on the flow and concentrated in a narrow spanwise region. It is experimentally shown that the local flow nonuniformity leads to a change in the flow stability features, such as the frequencies of the growing oscillations, their growth rate, and the dispersion characteristics. As a result, the transverse velocity gradients induced in the separation zone exert a strong destabilizing influence on the flow. Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 174–178, January–February, 2000. The study was carried out with the support of the INTAS Foundation under grant No, 96-2225.  相似文献   

5.
A numerical study of dynamics and heat/mass transfer in a gas-droplet turbulent boundary layer on a vertical flat plate is carried out. A large number of factors which affect the heat and mass transfer and the structure of thermal and concentration fields in a turbulent boundary layer is analyzed. It is shown that the increase in droplet concentration results in the intensification of heat transfer, as compared with the single-phase air flow. The comparison of this analysis with experimental data shows a qualitative and quantitative agreement between the calculated and experimental data.  相似文献   

6.
Flow and heat transfer in the flat-plate boundary layer is numerically investigated using a differential three-equation turbulence model for the initial freestream turbulence intensity ranging from 1.5 to 9%. An increase in the local friction coefficient and the Stanton number obtained in the calculations is in agreement with the most representative experimental data.  相似文献   

7.
This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

8.
The temperature distribution in particle-laden turbulent flow, in a flume, was investigated both by DNS and experimentally. Simulations were performed at Re=171 and Pr=5.4 in order to study the interaction between the particle motion and flow turbulence. Two-way coupling was used to obtain various turbulence statistics, the grid resolution was sufficiently fine to resolve all essential turbulent scales. The effect of particle diameter on momentum, heat transfer and particle deposition was considered. The details of particle-turbulence interaction depend on the particle Stokes number and the particle Reynolds number.

The spatial structures of instantaneous flow and temperature fields were visualized. Low frequency small oscillations of deposited particles were observed. It was found that these small deviations from the initial position, caused strong changes in the instantaneous temperature field near the particle.

The experiments provided details of the temperature field on the heated wall close to the particle. In the front of the particle, a sharp increase in heat transfer coefficient was observed. The experimental results agree well with the computational predictions.  相似文献   


9.
Solution of a turbulent boundary layer for a constant property, particle-laden gas flow is obtained by a differential method. A dimensionless analysis shows importance of an interaction parameter in increasing heat flux. Boundary layer analysis is done in usual manner by transforming partial differential equations and solution is started at the leading edge by Runge-Kutta method. Velocity and temperature profiles at downstream planes for gas and particles are calculated by an implicit finite-difference iterative procedure, and numerical results are compared with available experimental data.  相似文献   

10.
In this paper the study of visco-elastic (Walters' liquid B model) flow past a stretching plate with suction is considered. Exact solutions of the boundary layer equations of motion and energy are obtained. The expressions for the coefficient of skin friction and of boundary layer thickness are obtained.  相似文献   

11.
12.
Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.  相似文献   

13.
14.
15.
Approximate analytic expressions for the local friction and heat transfer coefficients in a dusty laminar boundary layer are obtained and tested in the case of an incompressible carrier phase, power-law variation of the external gas flow velocity and small velocity and temperature phase disequilibrium. These expressions supplement the numerical analysis of the dusty boundary layer on a blunt body [1, 2] and the asymptotic calculation of the friction and heat transfer in a quasiequilibrium dusty gas boundary layer on a plate [3]. The combined effect of dustiness and pressure gradient on the friction and heat transfer coefficients is discussed. The results obtained can be used for the practical calculation of the friction and heat transfer in a quasiequilibrium dusty laminar boundary layer and for interpreting the corresponding experimental data. Tomsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–108, September–October, 1988.  相似文献   

16.
Summary Similarity conditions are presented for the solution of some problems of heat transfer in incompressible two-dimensional boundary layer flow. The treatment holds for forced convection as well as for free convection. For free convection no a priori restriction is made with respect to geometry or temperature distribution of the solid surface. For forced convection the treatment is restricted to uniform bulk flow parallel to a flat surface of non-uniform temperature or heat flux. The results are summarized in some tables that facilitate comparison with older work.  相似文献   

17.
The boundary layer flow behaviour in a smooth rotating channel with heated walls is measured by particle image velocimetry (PIV). To simulate the real operation environment of an internal coolant channel in a turbine blade, airflow is analysed in a rotating channel, whose four walls are uniformly heated by Indium Tin Oxide (ITO) glass. The flow is measured in the middle plane of the rotating channel with a Reynolds number equal to 10000 and rotation numbers ranging from 0 to 0.52. The results are presented for the boundary layer flow behaviour with and without heated thermal boundary conditions. The buoyancy force generated by the heated walls influences the flow behaviour under rotating conditions. Separated flow occurs, which substantially influences the turbulent flow behaviours. Sometimes, this buoyancy force can determine the flow behaviours. The results also showed that the displacement thickness and the momentum loss thickness present new changes at different radius positions due to the heated thermal boundary conditions. The displacement thicknesses of both the leading and trailing sides with heated walls are both thicker than those of the leading and trailing sides without heated walls. Then, the difference of the boundary layer thickness between these two cases increases with the increase of rotation number. For momentum loss thickness, a sharp drop happens when the rotation number increases to a certain value. At the large radius position, the drop in momentum loss thickness is much greater than that in the small radius position.  相似文献   

18.
19.
The Governing Principle of Dissipative Processes (GPDP) formulated by Gyarmati into non-equilibrium thermodynamics is employed to study the effects of heat transfer, two dimensional, laminar and constant property fluid flow in the boundary layer with suction and injection. The flow and temperature fields inside the boundary layer are approximated by simple third degree polynomial functions and the variational principle is formulated over the region of the boundary layer. The Euler–Lagrange equations of the principle are obtained as polynomial equations in terms of momentum and thermal layer thicknesses. These equations are solvable for any given values of Prandtl number Pr, wedge angle parameter m and suction/injection parameter H. The obtained analytical solutions are compared with known numerical solutions and the comparison shows the fact that the accuracy is remarkable.  相似文献   

20.
Velocity, turbulent intensity, static pressure and temperature measurements over the flat plate and blocked surfaces were investigated in a low speed wind tunnel in the presence of free stream velocity and block height. The experiments were carried out for free stream velocities of 5, 7 and 10 m/s encompassing the transitional region and for block heights of 10, 15 and 20 mm forming the different flow samples. A constant-temperature anemometer, a micro-manometer and copper-constant thermocouples were used for measurements of velocity and turbulent intensity, static pressure and temperature, respectively. The results showed that the flow separations and reattachments occurred on the blocked surfaces which enhanced the average heat transfer up to 1.54, 1.71 and 1.84 fold of the flat plate value at 5 m/s for the rising block height, 1.49, 1.68 and 1.80 at 7 m/s, and 1.44, 1.63 and 1.78 at 10 m/s, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号