首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction mechanism involved in the growth of InxGa1−xAs lattice matched to InP by chemical beam epitaxy (CBE) was investigated using growth and modulated beam mass spectrometry studies. Emphasis was placed on elucidating how variations in substrate temperature, indium composition and arsenic overpressure influence growth kinetics and how sensitive changes in experimental conditions bring about deviations in the ideal stoichiometry (In0.53Ga0.47As) required for lattice matching to InP. Our observations indicate that the compositional variations in the InGaAs stoichiometry at high temperatures (> 485°C) arise because of the changes in the DEG decomposition: desorption branching ratio which is controlled by a temperature- and arsenic pressure-dependent surface population of indium atoms. The low temperature behaviour is governed by the availability of metal surface sites for triethylgallium decomposition which is increased by the presence of surface indium atoms.  相似文献   

2.
We report on the vacuum chemical epitaxy (VCE) growth of GaAs from triethylgallium and arsine at varying partial pressures of arsine and hydrogen. In situ, monolayer growth oscillations were, for the first time, detected in a hydrogen environment using reflectance difference (RD). These results offer the possibility to link surface mechanisms occuring during chemical beam epitaxy (CBE) with those taking place in metalorganic vapour phase epitaxy (MOVPE) and may lead to the observation of growth oscillations also during MOVPE. Finally, the behaviour of the RD signal as a function of substrate temperature is studied over a wider temperature interval than has previously been reported, giving further information about surface processes.  相似文献   

3.
The growth rates of layers grown on a mesa-etched (001) GaAs surface were measured by in-situ scanning microprobe reflection high-energy electron diffraction (μ-RHEED) from the period of the RHEED intensity oscillation in real time. The diffusion lenght of the surface adatoms of column III elements was determined from the gradient of the variation of the growth rates in the cases of MBE, MOMBE using trimethylgallium (TMGa) and CBE using TMGa or triethylgallium (TEGa) and arsine (AsH3). The obtained values of the diffusion lengths were of the order of a micrometer in every case of the source-material combination. In the case of metalorganic materials as Ga source, it was found that the diffusion length was larger than that of Ga atom from metal Ga source. Since the substrate temperature of the present experiment is high enough to decompose TMGa and TEGa on the surface, Ga adatoms are considered to be responsible to the surface diffusion. Therefore, it is considered that the derivatives of the metalorganic molecules such as methyl radicals affect the diffusion of Ga adatoms.  相似文献   

4.
Highly p-type carbon-doped GaAs epitaxial layers were obtained using diiodomethane (CI2H2) as a carbon source. In the low 1019 cm−3 range, almost all carbon atoms are electrically activated and at 9×1019 cm−3, 91% are activated. The carbon incorporation efficiency in GaAs layers grown by metalorganic molecular beam epitaxy (MBE) and chemical beam epitaxy (CBE) is lower than that by MBE due to the site-blocking effect of the triethylgallium molecules. In addition, in CBE of GaAs using tris-dimethylaminoarsenic (TDMAAs), the carbon incorporation is further reduced, but it can be increased by cracking TDMAAs. Annealing studies indicate no hydrogenation effect.  相似文献   

5.
Dynamic optical reflectivity (DOR) uses the interference oscillations arising from the multiple reflections, of a normally incident CW laser beam, between the surface of a growing film and the film-substrate interface. The oscillations have a period determined by the refractive index of the film and the laser wavelength. DOR measurements have been made, in real time, during the CBE growth of AlxGa1−xAs layers on a GaAs(100) substrate. The results show that the growth rate and the aluminum composition x can be monitored.  相似文献   

6.
The interaction of triethylgallium (TEG) with the Ga-stabilized GaAs(100) surface in the presence of In and Al has been investigated using AES (Auger electron spectroscopy), HREELS (high resolution electron energy loss spectroscopy) and TDS (thermal desorption spectroscopy) techniques. Al is shown to greatly increase the saturation surface coverage of TEG on the surface and to suppress the desorption of TEG and diethylgallium (DEG). Etching of the surface Al by TEG is observed, resulting in the formation of gas phase Al organic species. Alkyl migration from GA to Al centres occurs, and the presence of Al substantially enhances the irreversible deposition of C. In is found to enhance DEG desorption and to lower the temperature at which absorbed ethyl groups decompose to gas phase ethene. Computer modelling has been carried out to extract kinetic parameters from measured thermal desorption spectra. These parameters are then used to calculate expected partial growth rates of GaAs during the growth of GaxAl1−xAs and GaxIn1−xAs using TEG. The data provide a molecular level understanding of the GaAs pa rtial growth rate variations arising during the deposition of III–V ternary materials.  相似文献   

7.
A new model for the decomposition of triethylgallium on GaAs(100), with kinetic parameters derived from the results of surface science experiments, is presented. Deficiencies of early models are corrected by including surface coverage and site blocking effects, and lateral interactions between absorbed DEG species are included. The model successfully predicts variations in the rate of CBE growth of GaAs with substrate temperature, and addresses effects induced by variations in arsenic overpressure. This dependence of growth rate on the arsenic flux is modelled by computing the steady state concentrations of absorbed arsenic as a function of temperature and As2 and TEG flux. Excess arsenic is shown to inhibit GaAs growth by blocking sites for TEG absorption.  相似文献   

8.
AlGaAs/GaAs heterostructures were grown by chemical beam epitaxy using triethylgallium, triisobutylaluminium and pure arsine in flow control mode with hydrogen as carrier gas. For substrate temperatures of 580°C and V/III ratios of 10, high quality AlGaAs layers are obtained; heterostructures show abrupt and smooth interfaces. Modulation doping with silicon evaporated from a conventional effusion cell gives two-dimensional electron gases with carrier densities up to 1×1012 cm-2. Mobilities of 70000 cm2/V·s are obtained at 77 K for carrier densities of 4×1011 cm-2. The lateral homogeneity of the heterostructures in layer thickness, composition and doping level is excellent. Perfect morphology with defect densities of about 100 cm-2 is observed. High electron mobility transistors (gate length 0.3 nm) fabricated from quantum well structures show a transconductance of about 380 mS/mm.  相似文献   

9.
We describe the recent progress of multi-wafer CBE systems demonstrating their potential capability of producing III–V semiconductor device structures with excellent uniformity and state-of-the-art performance. Up to three 4 inch wafers can be grown simultaneously with excellent uniformity and extremely small wafer-to-wafer variation (x in AlxGa1−x As: 0.2136 ± 0.0014). A specifically designed high-conductance metalorganic gas cell with a tilted aperture without any diffuser gives a high uniformity together with a fast switching at the heterointerfaces. An intrinsic difficulty for obtaining good compositional uniformity of ternary alloys containing indium is overcome by improvement in the design of an In-free substrate holder showing a uniform temperature profile within ± 0.9°C across a whole wafer. To extend the capability of CBE, an in situ cleaning method which combines hydrogen radical cleaning and As-free cleaning was investigated. The n-type GaAs epilayers showed a reduced depletion of electrons at the air-exposed regrown interface. From SIMS analysis, hydrogen radical and As-free cleaning show stronger effects on gettering carbon, and oxygen, respectively. Some C contamination during the 2nd As-free cleaning procedure is expected to be eliminated by decreasing the treatment temperature from the separately optimized one. The successful cleaning of InP substrates using trisdimethylaminophosphorous (TDMAP) would also extend the capability of CBE for the reproducible growth of large area (> 3 × 3 inch) InP-based materials.  相似文献   

10.
In this study, the use of novel, liquid, organic arsenic precursors as substitutes for the highly toxic hydride gas arsine (AsH3) in low pressure metalorganic vapor phase epitaxy (LP-MOVPE) of (GaIn)As lattice matched on InP has been investigated. The model precursors out of the classes of (alkyl)3-nAsHn (n = 0,1,2) are tertiarybutyl arsine (TBAs), ditertiarybutyl arsine (DitBAsH) and diethyltertiarybutyl arsine (DEtBAs). The MOVPE growth has been investigated in the temperature range of 570–650°C using V/III ratios from 2 to 20. The obtained epitaxial layer quality as examined by means of optical and scanning electron microscopy (SEM), high resolution double crystal X-ray diffraction, temperature-dependent van der Pauw-Hall, as well as photoluminescence (PL) measurements, will be compared for the different source molecules. Under optimized conditions almost uncompensated n-type (GaIn)As layers with carrier concentrations below 1 × 1015 cm−3 and corresponding mobilities above 80 000 cm2/V · s have been realized. For TBAs and DitBAsH in combination with the corresponding P sources TBP and DitBuPH, respectively, we have worked out a process parameter area for the growth of layers with device quality, as proven by the realization of a pin-detector structure.  相似文献   

11.
Heavily carbon-doped p-type InxGa1−xAs (0≤x<0.49) was successfully grown by gas-source molecular beam epitaxy using diiodomethane (CH2I2), triethylindium (TEIn), triethylgallium (TEGa) and AsH3. Hole concentrations as high as 2.1×1020 cm−3 were achieved in GaAs at an electrical activation efficiency of 100%. For InxGa1−xAs, both the hole and the atomic carbon concentrations gradually decreased as the InAs mole fraction, x, increased from 0.41 to 0.49. Hole concentrations of 5.1×1018 and 1.5×1019 cm−3 for x = 0.49 and x = 0.41, respectively, were obtained by a preliminary experiment. After post-growth annealing (500°C, 5 min under As4 pressure), the hole concentration increased to 6.2×1018 cm−3 for x = 0.49, probably due to the activation of hydrogen-passivated carbon accepters.  相似文献   

12.
Films of aluminium nitride (AIN) with thicknesses in the range from 200 to 3600 Å have been deposited at 1050°C by low-pressure MOCVD. Using an alternative precursor, tritertiarybutylaluminium (tBu3Al), and ammonia (NH3), we have grown AlN on sapphire (c-Al2O3). At a growth rate of 0.35 μm/h, the FWHM of the rocking curve measured by X-ray diffraction was 150 arcsec. Therefore, we used the thin AlN films as buffer layers for the deposition of gallium nitride (GaN) at 950°C using triethylgallium (Et3Ga). Aluminium gallium nitride (AlxGa1−xN) with aluminium contents x from 0 to 0.5 were grown using a mixture of Et3Ga and tBu3Al. The strctural and optical properties of GaN, AlGaN and AlN were verified by X-ray diffraction (XRD), spectrally resolved photoconductivity (SPC), photothermal deflection (PDS) and photoluminescence spectroscopies.  相似文献   

13.
Current approaches to the study of reaction mechanisms in CBE and investigations of the potential of triisobutylgallium and tritertiarybutylgallium as novel CBE precursors are reviewed. Surface spectroscopic techniques indicate that adsorbed iso-butyl radicals decompose to produce gaseous butene and hydrogen at significantly lower temperatures than in the corresponding process for ethyl radicals on GaAs, resulting in lowered growth temperatures and low temperature C incorporation levels in comparison to the results obtained with triethylgallium. A β-methyl migration occurs at higher temperatures causing C to deposit irreversibly on the surface in the presence of Al. Lowered temperatures for the β-hydride elimination reaction are also observed for adsorbed tertiarybutyl radicals and the absence of β-methyl groups avoids the facile C deposition process seen for iso-butyl. These potential advantages associated with tertiarybutyl ligands cannot be realized straightforwardly in CBE using tritertiarybutylgallium however, since steric crowding effects result in the inefficient total dissociation of the adsorbing precursor molecule.  相似文献   

14.
This paper describes the first reported use of diethylaluminium hydride-trimethylamine adduct (DEAlH-NMe3) for the growth of GaAs/GaAlAs power heterojunction bipolar transistors (HBTs) by chemical beam epitaxy (CBE). This precursor possesses a significantly higher vapour pressure than the more conventionally used triethylaluminium (TEA), and leads to much less stringent requirements for bubbler and gas-line heating, and also much-improved GaAs/GaAlAs heterojunction definition when no carrier gas is employed. The use of all-gaseous n- and p-type dopants offers significant technological advantages in CBE, and the current paper also provides the first report of the use of hydrogen sulphide for n-type doping of CBE-grown GaAlAs HBT emitter regions. In conclusion, DC and RF data obtained from the heterojunction bipolar transistors fabricated to date are described. A DC gain of 40 has already been measured and encouraging early data obtained from RF-probed devices are also presented.  相似文献   

15.
InGaAs/GaAs heterostructures grown on (001) substrates by low-pressure MOVPE exhibit a measurable anisotropy in their structural, optical and electrical properties. This anisotropy occurs in structures which have undergone partial or complete strain relaxation and it can be strongly reduced by using slightly misoriented substrates. A comparison with similar structures grown by CBE indicates that this anisotropy is less important. This study suggests that strain relaxation is achieved by a combination of several mechanisms whose relative importance depends on the orientation of the substrate and on growth temperature which varies with the growth technique.  相似文献   

16.
Segregation processes entail severe deviations from the nominal composition profiles of heterostructures grown by molecular beam epitaxy for most semiconductor systems. It is, however, possible to compensate exactly these effects, as shown here for InGaAs/GaAs. The deposition of a one-monolayer-thick indium-rich prelayer of InGaAs (or of a sub-monolayer amount of InAs) prior to growth of InxGa1−xAs allows forming a perfectly abrupt InxGa1−xAs-on-GaAs interface. Thermal annealing can furthermore be performed at the GaAs-on-InGaAs inter face, so as to desorb surface indium atoms and suppress In incorporation in the GaAs overlayer. This powerful approach has been validated from a detailed study of the surface composition at various stages of the growth of InGaAs/GaAs quantum wells, as well as from high-resolution transmission electron microscopy and photoluminescence investigations.  相似文献   

17.
In this paper, we will discuss how the unique growth chemistry of MOMBE can be used to produce high speed GaAs/AlGaAs heterojunction bipolar transistors (HBTs). The ability to grow heavily doped, well-confined layers with carbon doping from trimethylgallium (TMG) is a significant advantage for this device. However, in addition to high p-type doping, high n-type doping is also required. While elemental Sn can be used to achieve doping levels up to 1.5×1019 cm-3, severe segregation limits its use to surface contact layers. With tetraethyltin (TESn), however, segregation does not occur and Sn doping can be used throughout the device. Using these sources along with triethylgallium (TEG), trimethylamine alane (TMAA), and AsH3, we have fabricated Npn devices with 2 μm×10 μm emitter stripes which show gains of ≥ 20 with either ƒt = 55 GHz and ƒmax = 70 GHz or ƒt = 70 GHz and ƒmax = 50 GHz, depending upon the structure. These are among the best RF values reported for carbon doped HBTs grown by any method, and are the first reported for an all-gas source MOMBE process. In addition, we have fabricated a 70 transistor decision circuit whose performance at 10 Gb/s equals or exceeds that of similar circuits made from other device technologies and growth methods. These are the first integrated circuits reported from MOMBE grown material.  相似文献   

18.
In situ reflection high energy electron diffraction (RHEED) has been used to study the time evolution during self-assembled molecular beam epitaxy (MBE) growth of InAs quantum dots on GaAs. Using a special data acquisition technique, two characteristic time constants are determined very precisely: the time tc up to the first appearance of InAs dots and the time tf it takes to complete the 2D–3D transition of all islands. Surprisingly, we find that tc increases with temperature which disagrees with a thermally activated process. In contrast to this, tf behaves Arrhenius-like and an activation energy of Ef0.39 eV is determined. Furthermore, the sum tc+tf does not depend significantly on temperature and corresponds to an InAs coverage of 2.0 monolayers. A second focus of this paper is the study of dissolution of InAs dots after interruption of the As flux. From the experiments, an activation energy of 3.2 eV for desorption of In located on top of the wetting layer is determined, whereas direct desorption from the wetting layer corresponds to an activation energy of 3.4 eV.  相似文献   

19.
We present in this work a simple quantum well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a metalorganic vapour phase epitaxy system. Comparisons between two different commercially available purifiers are based on the analysis of low-temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (1 0 0). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable with those that can be obtained by molecular beam epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1 ppb level are needed to achieve high quality quantum well growth.  相似文献   

20.
The effect of 12 ns, 308 nm (XeCl) excimer laser pulses on the CBE growth rate of GaAs, at temperatures below the maximum non-laser assisted growth rate, Gmax, has been studied as a function of laser fluence and repetition frequency. There is a threshold fluence for growth rate enhancement, above which the growth rate is dependent on repetition frequency, being restored to Gmax at 20 Hz. The growth rate in the laser spot is measured by dynamic optical reflectivity (DOR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号