首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel hexadentate nitrogen donor [N6] macrocyclic ligand viz, 1,5,11,15,21,22-hexaaza-2,14-dimethyl-l4,12-diphenyltricyclo[15.3.1.I(7–11)]docosane[1,4,6,8,10(22)-11,14,16,18,20(21)]decaene (L), has been synthesised. The Co (II), Ni (II), and Cu (II) complexes with this ligand have been prepared and subjected to elemental analysis, molar conductance, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and ESR spectral studies and electrochemical investigation. On the basis of molar conductance the complexes can be formulated as [M(L)]X2 (where M = Co (II), Ni (II), Cu (II) and X = Cl and NO3) due to their 1: 2 electrolytic nature in DMSO. All the complexes are of the high-spin type and are six-coordinated. On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned for the Co(II) and Ni(II) complexes, whereas a tetragonal geometry for the Cu(II) complexes was found. Antimicrobial activity of L and its complexes as growth inhibiting agents have been screened in vitro against two species (F. moniliformae and R. solani) of plant pathogenic fungi. The text was submitted by the authors in English.  相似文献   

2.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

3.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

4.
The Schiff base ligand derived from indole-3-carboxaldehyde(indal) and glycylglycine(glygly) were synthesized and characterized by elemental analysis, IR, electronic spectrum, 1H NMR and mass spectrum. Co(II), Ni(II) and Cu(II)–indal-glygly Schiff base complexes were synthesized and characterized by elemental analysis, molar conductance, IR, electronic spectra, magnetic measurements, ESR, electrochemical studies, TGA, DSC analysis, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR spectral data show that the ligand is tridentate and the binding sites are azomethine nitrogen, peptide nitrogen and carboxylato oxygen atoms. Electronic spectral measurements indicate tetrahedral geometry for Co(II) and Ni(II) complexes and square planar geometry for Cu(II) complex. Magnetic measurements show weak ferromagnetic behaviour for Co(II) and Ni(II) complexes and paramagnetic behaviour for Cu(II) complex. ESR spectral data shows the ionic link between metal and the Schiff base ligand. The metal complexes are found to be stabilized in the unusual oxidation states of the metal ion during electrolysis. Thermal analysis of the complex indicates that the decomposition takes place in three steps. IR and thermal studies indicate that the fourth position would be occupied by a water molecule in complexes. XRD shows that the complexes have the crystallite size of 31, 40 and 67 nm, respectively. The surface morphology of the complexes was studied by SEM. The antimicrobial activity of the ligand and its complexes were screened by Kirby Bayer Disc Diffusion method. DNA cleavage studies were performed for metal–Schiff base complexes in presence of hydrogen peroxide as oxidant.  相似文献   

5.
In this study, Seven new complexes incorporating (E)-2-(((5-([2-hydroxyphenoxy]methyl)furan-2-yl)methylene)amino)phenol derived from 2-hydroxyphenoxymethylfuran-5-carbaldehyde and 2-aminophenol have been synthesized using Cu(II), Cr(III), Fe(III), Ni(II), Co(II), Zn(II), and Pt(IV) metal salts. Thermal measurements, molar conductance, magnetic moment, elemental analyses, spectral (IR, UV–Vis, 1H nuclear magnetic resonance (NMR), ESR, Mass), were used to characterize insulated solid complexes. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the complexes were carried out in the range of 30–900°C. Magnetic susceptibility and electronic spectral data, as well as quantum chemical calculations, reveal the square planar geometry for Ni (II) complex, square planar/octahedral geometry for Cu (II) complex, while Co(II), Zn(II), Cr(III), Fe(III), and Pt (IV) complexes are octahedral geometry. Density functional theory (DFT) studies revealed that geometries of metal complexes and Schiff base were entirely optimized in relation to use energy by 6–31 + g (d,p) basis set. The complexes show a well-defined crystal system indicated by a powder-X-ray diffraction pattern. The scanning electron microscope showed complexes were nanocrystalline in nature, in addition to the interaction of the complexes with calf thymus CT-DNA, which was investigated via the UV–visible absorption method. Therefore, the DNA cleavage activity by the H2L ligand and its metal complexes was performed. Finally, the synthesized complexes were tested for their in-vitro antimicrobial efficacy.  相似文献   

6.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

7.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

8.
Mn(II), Co(II), Ni(II), and Cu(II) complexes have been synthesized with benzil bis(thiosemicarbazone) (L) and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, thermogravimetric studies, infrared (IR), electronic, and electron paramagnetic resonance (eEPR) spectral studies. The molar conductance measurements of the complexes in DMF correspond to the non-electrolytic nature of the complexes. Thus these complexes may be formulated as [M(L)X2] (where M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl? and NO3 ?). On the basis of IR, electronic, and EPR spectral studies, an octahedral geometry has been assigned for Mn(II), Co(II), and Ni(II) complexes, whereas a tetragonal geometry for the Cu(II) complexes is presumed. The free ligand and its metal complexes were tested against the phytopathogenic fungi (i.e., Rhizoctonia baticola, Alternaria alternata) in vitro.  相似文献   

9.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

10.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

11.
Mn(II), Co(II), Ni(II) and Cu(II) complexes of 5‐mercapto‐1,2,4‐triazol‐3‐imine‐2′‐hydroxynaphthaline have been synthesized and characterized by elemental analysis, IR, 1H NMR, EI‐mass, UV‐Vis, and ESR (electron spin resonance) spectra, molar conductance, magnetic moment measurements, DC conductivity and thermogravimetric analysis. IR spectra confirm that the ligand molecule existed in both thione and thiole forms. The molar conductance values indicate the complexes are nonelectrolyte. The magnetic moment values of the complexes display paramagnetic behavior. All studies confirm the formation of an octahedral geometry for complex 1 and the other complexes have tetrahedral geometrical structures. The structures of the complexes have also been theoretically studied by using the molecular mechanic calculations by the hyperchem. 8.03 molecular modeling program which confirm the proposed structures. The Schiff‐base ligand and its metal complexes have also been screened for their antimicrobial activities.  相似文献   

12.
Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of Schiff bases derived from the condensation of sulfaguanidine with 2,4‐dihydroxy benzaldehyde ( HL1 ), 2‐hydroxy‐1‐naphthaldehyde ( HL2 ) and salicylaldehyde ( HL3 ) have been synthesized. The structures of the prepared metal complexes were proposed based on elemental analysis, molar conductance, thermal analysis (TGA, DSC and DTG), magnetic susceptibility measurements and spectroscopic techniques (IR, UV‐Vis, and ESR). In all complexes, the ligand bonds to the metal ion through the azomethine nitrogen and α‐hydroxy oxygen atoms. The structures of Pd(II) complex 8 and Ru(III) complex 9 were found to be polynuclear. Two kinds of stereochemical geometries; distorted tetrahedral and distorted square pyramidal, have been realized for the Cu(II) complexes based on the results of UV‐Vis, magnetic susceptibility and ESR spectra whereas octahedral geometry was predicted for Co(II), Mn(II) and Ru(III) complexes. Ni(II) complexes were predicted to be square planar and tetrahedral and Pd(II) complexes were found to be square planar. The antimicrobial activity of the ligands and their metal complexes was also investigated against the gram‐positive bacteria Staphylococcus aures and Bacillus subtilis and gram‐negative bacteria, Escherichia coli and Pesudomonas aeruginosa, by using the agar dilution method. Chloramphenicol was used as standard compound. The obtained data revealed that the metal complexes are more or less, active than the parent ligand and standard. The X‐ray crystal structure of HL3 has been also reported.  相似文献   

13.
A novel series of complexes of the type [M(TML)X2]; where TML is a tetradentate macrocyclic ligand; M = Co(II), Ni(II), Cu(II) or Zn(II); X = Cl, CH3COO or NO 3 have been synthesized by template condensation of benzil and thiocarbohydrazide in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, molecular weight determination, magnetic measurements, electronic, NMR, infrared and far infrared spectral studies. Electronic spectra along with magnetic moments suggest the six coordinate octahedral geometry for these complexes. The low value of molar conductance indicates them to be non-electrolytes. The biological activities of metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential.  相似文献   

14.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

15.
Cyclodiphosph(V)azane of chromene, (1,3-diphenyl-2,4-bis(3-amino-9-methoxy1-tolyl-3H-benzo[f]chromene-2-carbonitrile)-2,2,4,4-tetrachlorocyclodiphosph(V)azane (III), reacts with stoichiometric amounts of transition metal salts such as Co(II), Ni(II), Cu(II), and Pd(II) to afford colored complexes in a moderate to high yield. The structure of the isolated complexes was suggested based on elemental analyses, IR, molar conductance, UV-Vis, 1H, 13C, and 31P-NMR, magnetic susceptibility measurements, and dark electrical conductivity of solid state from room temperature up to 450 K. The complexes have been investigated in solution by spectrophotometric molar ratio and conductometric methods. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using the Coats and Redfern method. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

16.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

17.
Novel [1,3-di-[N 1 -4-methoxy-1,2,5-thiadiazole-3-yl-sulfanilamide(sulfametrole)]-2″4-bis-[1,3-dithiole-2-thione-4,5-dithiolate]-2′,4′-dichl-orocyclodiphosph(V)azane] (III) , was prepared and their coordinating behavior towards the metal ions Co(II), Ni(II), Cu(II), and Pd(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV, 1 H, and 31 P NMR, ESR, magnetic susceptibility, molar ratio, conductometric titration and electrical conductivity measurements. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

18.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

19.
Mononuclear Zn(II), Cd(II), Cu(II), Ni(II) and Pd(II) metal complexes of Schiff-base ligand(HL1) derived from 8-acetyl-7-hydroxycoumarin and P-phenylenediamine were prepared and characterized by microanalytical, mass, UV–Vis, IR, 1H NMR, 13C NMR, ESR, conductance and fluorescence studies. The measured low molar conductance values in DMSO indicate that the complexes are non-electrolytes. The structures of the solid complexes under study are established by using IR, electronic and ESR spectroscopy suggesting that Zn(II) and Ni(II) complexes are octahedral, Cd(II) complex is tetrahedral, Cu(II) and Pd(II) complexes are square planar. The ESR spectrum of the Cu(II) complex in DMSO at 298 and 150 K was recorded and its salient features are reported, it supports the mononuclear structure. The Schiff base exhibited photoluminescence originating from intraligand (π–π*) transitions. Metal-mediated enhancement is observed on complexation of HL with Zn(II) and Cd(II), whereas metal-mediated fluorescence quenching occurs in Cu(II), Ni(II) and Pd(II).  相似文献   

20.
A new series of Cu(II), Ni(II), and Co(II) complexes have been synthesized from 3-formylchromoniminopropylsilatrane (C19H24O5N2Si) (2) and 3-formylchromoniminopropyltriethoxysilane (1). Silatrane ligand (C19H24O5N2Si) (2) has been synthesized by the reaction between 3-aminopropyltriethoxysilane and 3-formylchromone followed by a treatment with triethanolamine. The nature of bonding and the geometry of the complexes have been deduced from elemental analyses, magnetic susceptibility, infrared, electronic, 1H NMR, 13C NMR, and ESR spectral studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square planar geometry for Cu(II) and Ni(II) and tetrahedral geometry for Co(II). The redox behavior of copper complexes was studied by cyclic voltammetry. The biological activity of the ligand and metal complexes has been studied on Klebsiella pneumoniae, Staphylococcus aureus, Escherichia Coli, and Bacillus subtilis by the well diffusion method using acetonitrile as solvent. The zone of inhibition values were measured at 37°C for 24 h. Antimicrobial screening tests show better results for the metal complexes than the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号