首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用于细胞破裂的微流控生物芯片的研制   总被引:4,自引:0,他引:4  
陈兴  崔大付  刘长春  蔡浩原 《分析化学》2006,34(11):1656-1660
基于微电子机械系统(MEMS)技术,研制成一种夹流式血细胞破裂微流控生物芯片。细胞样品在破胞试剂夹流作用下导入芯片并在微沟道中流动,两种液体在流动过程中充分混合,导致细胞破裂。采用抗凝全血为细胞样品,比较胍盐和曲拉通的破胞效果;并分析在胍盐破裂细胞条件下,细胞浓度和流速对破胞效果的影响。控制破胞试剂流速远大于样品流速,可在几秒钟内完成细胞的破裂;保持破胞试剂与样品流速的比例,同时提高流速可在芯片上实现细胞的快速破裂。夹流式细胞破裂芯片具有与细胞分离芯片和脱氧核糖核酸(DNA)提取芯片相集成的潜力,可实现对复杂生物样品预处理操作,为实现微全分析系统打下良好基础。  相似文献   

2.
This paper reports the development of a disposable, integrated biochip for DNA sample preparation and PCR. The hybrid biochip (25 × 45 mm) is composed of a disposable PDMS layer with a microchannel chamber and reusable glass substrate integrated with a microheater and thermal microsensor. Lysis, purification, and PCR can be performed sequentially on this microfluidic device. Cell lysis is achieved by heat and purification is performed by mechanical filtration. Passive check valves are integrated to enable sample preparation and PCR in a fixed sequence. Reactor temperature is needed to lysis and PCR reaction is controlled within ±1°C by PID controller of LabVIEW software. Buccal epithelial cell lysis, DNA purification, and SY158 gene PCR amplification were successfully performed on this novel chip. Our experiments confirm that the entire process, except the off‐chip gel electrophoresis, requires only approximately 1 h for completion. This disposable microfluidic chip for sample preparation and PCR can be easily united with other technologies to realize a fully integrated DNA chip.  相似文献   

3.
The lab-on-a-chip concept has led to several point-of-care (POC) diagnostic microfluidic platforms. However, few of these can process raw samples for molecular diagnosis and fewer yet are suited for use in a resource-limited setting without permanent electrical infrastructure. We present here a very low cost paper microfluidic device for POC extraction of bacterial DNA from raw viscous samples--a challenge for conventional microfluidic platforms. This is an example of "microfluidic origami" in that the system is activated by folding; demonstrated here is room temperature cell lysis and DNA extraction from pig mucin (simulating sputum) spiked with E. coli without the use of external power. The microfluidic origami device features dry reagent storage and rehydration of the lysis buffer. We demonstrate DNA extraction from samples with a bacterial load as low as 33 CFU ml(-1). Extraction times, starting from the raw sample, have been optimized to about 1.5 h without the use of external power, or to within 1 h using an oven or a heater block. The fabrication of this paper microfluidic device can be translated into high volume production in the developing world without the need for a semiconductor clean room or a microfabrication facility. The sample preparation can be performed with the addition of just the sample, water, ethanol and elute buffer to the device, thus reducing chemical hazards during transport and handling.  相似文献   

4.
In this paper we report an innovative use of Poly(DiMethyl)Siloxane (PDMS) to design a microfluidic device that combines, for the first time, in one single reaction chamber, DNA purification from a complex biological sample (blood) without elution and PCR without surface passivation agents. This result is achieved by exploiting the spontaneous chemical structure and nanomorphology of the material after casting. The observed surface organization leads to spontaneous DNA adsorption. This property allows on-chip complete protocols of purification of complex biological samples to be performed directly, starting from cells lysis. Amplification by PCR is performed directly on the adsorbed DNA, avoiding the elution process that is normally required by DNA purification protocols. The use of one single microfluidic volume for both DNA purification and amplification dramatically simplifies the structure of microfluidic devices for DNA preparation. X-Ray Photoelectron Spectroscopy (XPS) was used to analyze the surface chemical composition. Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM) were employed to assess the morphological nanostructure of the PDMS-chips. A confocal fluorescence analysis was utilized to check DNA distribution inside the chip.  相似文献   

5.
This paper reports a novel microfluidic-chip based platform using "phase-transfer magnetophoresis" enabling continuous biomolecule processing. As an example we demonstrate for the first time continuous DNA extraction from cell lysate on a microfluidic chip. After mixing bacterial Escherichia coli culture with superparamagnetic bead suspension, lysis and binding buffers, DNA is released from cells and captured by the beads. These DNA carrying beads are continuously transported across the interfaces between co-flowing laminar streams of sample mixture, washing and elution buffer. Bead actuation is achieved by applying a time-varying magnetic field generated by a rotating permanent magnet. Flagella-like chains of magnetic beads are formed and transported along the microfluidic channels by an interplay of fluid drag and periodic magnetic entrapment. The turnover time for DNA extraction was approximately 2 minutes with a sample flow rate of 0.75 μl s(-1) and an eluate flow rate of 0.35 μl s(-1). DNA recovery was 147% (on average) compared to bead based batch-wise extraction in reference tubes within a dilution series experiment over 7 orders of magnitude. The novel platform is suggested for automation of various magnetic bead based applications that require continuous sample processing, e.g. continuous DNA extraction for flow-through PCR, capture and analysis of cells and continuous immunoassays. Potential applications are seen in the field of biological safety monitoring, bioprocess control, environmental monitoring, or epidemiological studies such as monitoring the load of antibiotic resistant bacteria in waste water from hospitals.  相似文献   

6.
基于固相萃取原理和微电子机械系统(Micro-Electro-Mechanical System, MEMS)技术研制了一种多孔氧化硅微流控样品预处理芯片, 并利用具有大比表面积的多孔氧化硅作为提取DNA的固相载体, 从而大大提高了DNA的提取产率. 分析了影响DNA提取产率的因素, 改进了芯片制备工艺和DNA提取实验方案, 成功地提取了小鼠外周血DNA, 提取产率为24 ng/(μL全血), 达到商用试剂盒水平. 同时以该DNA作为PCR扩增模板, 扩增效果良好.  相似文献   

7.
Huh YS  Park TJ  Lee EZ  Hong WH  Lee SY 《Electrophoresis》2008,29(14):2960-2969
An active micromixer system utilizing the magnetic force was developed and examined for its ability to facilitate the mixing of more than two fluid flows. The mixing performance of the active micromixer was evaluated in aqueous-aqueous systems including dyes for visual observation. A complete analytical microfluidic system was developed by integrating various functional modules into a single chip, thus allowing cell lysis, sample preparation, purification of intracellular molecules, and subsequent analysis. Upon loading the cell samples and lysis solution into the mixing chamber, the integrated microfluidic device allows efficient cell disruption by rotation of a micromagnetic disk and control of mixing time using the Teflon-coated hydrophobic film as a microvalve. This inflow is followed by separating the cell debris and contaminated proteins from the cell lysate sample using the acrylamide (AAm)-functionalized SPE. The inflow of partially purified cell lysate sample containing the gold binding polypeptide (GBP)-fusion protein was bound onto the gold micropatterns by means of its metal binding affinity. The GBP-fusion method allows immobilization of proteins in bioactive forms onto the gold surface without surface modification suitable for studying antigen-antibody interaction. It was used for the detection of severe acute respiratory syndrome (SARS), an infectious viral disease, as an example case.  相似文献   

8.
Chen X  Cui D  Liu C  Li H  Chen J 《Analytica chimica acta》2007,584(2):237-243
A novel integrated microfluidic device that consisted of microfilter, micromixer, micropillar array, microweir, microchannel, microchamber, and porous matrix was developed to perform sample pre-treatment of whole blood. Cell separation, cell lysis and DNA purification were performed in this miniaturized device during a continuous flow process. Crossflow filtration was proposed to separate blood cells, which could successfully avoid clogging or jamming. After blood cells were lyzed in guanidine buffer, genomic DNA in white blood cells was released and adsorbed on porous matrix fabricated by anodizing silicon in HF/ethanol electrolyte. The flow process of solutions was simulated and optimized. The anodization process of porous matrix was also studied. Using the continuous flow procedure of cell separation, cell lysis and DNA adsorption, average 35.7 ng genomic DNA was purified on the integrated microfluidic device from 1 μL rat whole blood. Comparison with a commercial centrifuge method, the miniaturized device can extract comparable amounts of PCR-amplifiable DNA in 50 min. The greatest potential of this integrated miniaturized device was illustrated by pre-treating whole blood sample, where eventual integration of sample preparation, PCR, and separation on a single device could potentially enable complete detection in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.  相似文献   

9.
A sample pretreatment microfluidic chip was described based on the principle of solid phase extraction and micro electro mechanical system technology. Oxidized porous silicon with the large surface area as the solid phase matrix for absorption of DNA from a biological sample can greatly improve the DNA yield. The factors that could affect the DNA yield were analyzed and the preparation technology and the experiment procedure were improved. The DNA purification process from the rat peripheral blood can be achieved and the DNA yield is 24 ng/(μL whole blood), which can reach the level of the commercial DNA purification kits. Furthermore, the DNA extracted from the whole blood can be amplified by polymerase chain reaction, which can achieve a high efficiency of the amplification. Translated from Chemical Journal of Chinese Universities, 2006, 27(4) (in Chinese)  相似文献   

10.
Kim DS  Lee SH  Ahn CH  Lee JY  Kwon TH 《Lab on a chip》2006,6(6):794-802
Blood typing is the most important test for both transfusion recipients and blood donors. In this paper, a low cost disposable blood typing integrated microfluidic biochip has been designed, fabricated and characterized. In the biochip, flow splitting microchannels, chaotic micromixers, reaction microchambers and detection microfilters are fully integrated. The loaded sample blood can be divided by 2 or 4 equal volumes through the flow splitting microchannel so that one can perform 2 or 4 blood agglutination tests in parallel. For the purpose of obtaining efficient reaction of agglutinogens on red blood cells (RBCs) and agglutinins in serum, we incorporated a serpentine laminating micromixer into the biochip, which combines two chaotic mixing mechanisms of splitting/recombination and chaotic advection. Relatively large area reaction microchambers were also introduced for the sake of keeping the mixture of the sample blood and serum during the reaction time before filtering. The gradually decreasing multi-step detection microfilters were designed in order to effectively filter the reacted agglutinated RBCs, which show the corresponding blood group. To achieve the cost-effectiveness of the microfluidic biochip for disposability, the biochip was realized by the microinjection moulding of COC (cyclic olefin copolymer) and thermal bonding of two injection moulded COC substrates in mass production with a total fabrication time of less than 20 min. Mould inserts of the biochip for the microinjection moulding were fabricated by SU-8 photolithography and the subsequent nickel electroplating process. Human blood groups of A, B and AB have been successfully determined with the naked eye, with 3 microl of the whole sample bloods, by means of the fabricated biochip within 3 min.  相似文献   

11.
Kim J  Gale BK 《Lab on a chip》2008,8(9):1516-1523
A nanoporous aluminium oxide membrane was integrated into a microfluidic system designed to extract hgDNA (human genomic DNA) from lysed whole blood. The effectiveness of this extraction system was determined by passing known concentrations of purified hgDNA through nanoporous membranes with varying pore sizes and measuring the amount of hgDNA deposited on the membrane while also varying salt concentration in the solution. DNA extraction efficiency increased as the salt concentration increased and nanopore size decreased. Based on these results, hgDNA was extracted from whole blood while varying salt concentration, nanopore size and elution buffer to find the conditions that yield the maximum concentration of hgDNA. The optimal conditions were found to be using a low-salt lysis solution, 100 nm pores, and a cationic elution buffer. Under these conditions the combination of flow and ionic disruption were sufficient to elute the hgDNA from the membrane. The extracted hgDNA sample was analysed and evaluated using PCR (polymerase chain reaction) to determine whether the eluted sample contained PCR inhibition factors. Eluted samples from the microfluidic system were amplified without any inhibition effects. PCR using extracted samples was demonstrated for several genes of interest. This microfluidic DNA extraction system based on embedded membranes will reduce the time, space and reagents needed for DNA analysis in microfluidic systems and will prove valuable for sample preparation in lab-on-a-chip applications.  相似文献   

12.
Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman?, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.  相似文献   

13.
Cho YK  Lee JG  Park JM  Lee BS  Lee Y  Ko C 《Lab on a chip》2007,7(5):565-573
We report a fully integrated, pathogen-specific DNA extraction device utilizing centrifugal microfluidics on a polymer based CD platform. By use of the innovative laser irradiated Ferrowax microvalve (LIFM) together with the rapid cell lysis method using laser irradiation on magnetic particles, we could, for the first time, demonstrate a fully integrated pathogen specific DNA extraction from whole blood on a CD. As a model study, DNA extraction experiments from whole blood spiked with Hepatitis B virus (HBV) and E.coli were conducted. The total process of the plasma separation, mixing with magnetic beads conjugated with target specific antibodies, removal of plasma residual, washing and DNA extraction was finished within 12 min with only one manual step, the loading of 100 microL of whole blood. Real-time PCR results showed that the concentration of DNA prepared on a CD using a portable sample preparation device was as good as those by conventional bench top protocol. It demonstrates that our novel centrifugal microfluidics platform enables a full integration of complex biological reactions that require multi-step fluidic control.  相似文献   

14.
15.
Zhang Y  Park S  Liu K  Tsuan J  Yang S  Wang TH 《Lab on a chip》2011,11(3):398-406
This paper reports a droplet microfluidic, sample-to-answer platform for the detection of disease biomarkers and infectious pathogens using crude biosamples. The platform exploited the dual functionality of silica superparamagnetic particles (SSP) for solid phase extraction of DNA and magnetic actuation. This enabled the integration of sample preparation and genetic analysis within discrete droplets, including the steps of cell lysis, DNA binding, washing, elution, amplification and detection. The microfluidic device was self contained, with all reagents stored in droplets, thereby eliminating the need for fluidic coupling to external reagent reservoirs. The device incorporated unique surface topographic features to assist droplet manipulation. Pairs of micro-elevations were created to form slits that facilitated efficient splitting of SSP from droplets. In addition, a compact sample handling stage, which integrated the magnet manipulator, the droplet microfluidic device and a Peltier thermal cycler, was built for convenient droplet manipulation and real-time detection. The feasibility of the platform was demonstrated by analysing ovarian cancer biomarker Rsf-1 and detecting Escherichia coli with real time polymerase chain reaction and real time helicase dependent amplification.  相似文献   

16.
The application of micro total analysis system (μTAS) has grown exponentially in the past decade. DNA analysis is one of the primary applications of μTAS technology. This review mainly focuses on the recent development of the polymeric microfluidic devices for DNA analysis. After a brief introduction of material characteristics of polymers, the various microfabrication methods are presented. The most recent developments and trends in the area of DNA analysis are then explored. We focus on the rapidly developing fields of cell sorting, cell lysis, DNA extraction and purification, polymerase chain reaction (PCR), DNA separation and detection. Lastly, commercially available polymer-based microdevices are included.  相似文献   

17.
Huh YS  Choi JH  Huh KA  Kim KA  Park TJ  Hong YK  Kim do H  Hong WH  Lee SY 《Electrophoresis》2007,28(24):4748-4757
A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.  相似文献   

18.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

19.
Cheong KH  Yi DK  Lee JG  Park JM  Kim MJ  Edel JB  Ko C 《Lab on a chip》2008,8(5):810-813
The optothermal properties of nanoparticles are of interest for biosensors and highly sensitive biochip applications. In this respect, the longitudinal resonance of Au nanorods was used to transform near infrared energy into thermal energy in a microfluidic chip. The resulting heat generated effectively caused pathogen lysis. Consequently the DNA was extracted out of the cell body and transferred to a PCR system. This resulted in the successful demonstration of a one step real-time PCR system for pathogen detection without removal or changing of reagents.  相似文献   

20.
A highly effective, reagentless, mechanical cell lysis device integrated in microfluidic channels is reported. Sample preparation, specifically cell lysis, is a critical element in 'lab-on-chip' applications. However, traditional methods of cell lysis require purification steps or complicated fabrication steps that a simple mechanical method of lysis may avoid. A simple and effective mechanical cell lysis system is designed, microfabricated, and characterized to quantify the efficiency of cell lysis and biomolecule accessibility. The device functionality is based on a microfluidic filter region with nanostructured barbs created using a modified deep reactive ion etching process. Mechanical lysis is characterized by using a membrane impermeable dye. Three main mechanisms of micro-mechanical lysis are described. Quantitative measurements of accessible protein as compared to a chemically lysed sample are acquired with optical absorption measurements at 280 and 414 nm. At a flow rate of 300 microL min(-1) within the filter region total protein and hemoglobin accessibilities of 4.8% and 7.5% are observed respectively as compared to 1.9% and 3.2% for a filter without nanostructured barbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号