首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An evaluation was made of the feasibility of using reversed-phase liquid chromatography/tandem mass spectrometry with an electrospray interface (LC/ESI-MS/MS) to measure traces of phenoxyacid herbicides and their metabolites in surface and drinking water samples. The procedure involved passing 0.5 L of river and drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Recovery was higher than 85% irrespective of the aqueous matrix in which the analytes were dissolved. A conventional 4.6-mm i.d. reversed-phase LC C-18 column operating with a mobile phase flow rate of 1 mL/min was used to chromatograph the analytes. A flow of 200 microL/min of the column effluent was diverted to the ESI source. The limits of detection (signal-to-noise ratio = 3) of the method for the pesticides considered in drinking and surface water samples are less than 0.1 ng/L for phenoxyacid herbicides, and about 5-10 ng/L for their metabolites (2,4-dichlorophenol and 4-chloro-2-methylphenol).  相似文献   

2.
A rapid and sensitive method for determining phenylurea herbicides in environmental aqueous samples in the presence of their anilines is described. The water sample is preconcentrated by passage at a flow-rate of ca. 150 ml/min through a 250-mg graphitized carbon black (Carbopack B) cartridge. After washing with 0.6 ml of methanol, the Carbopack B trap is connected with a cartridge containing a strong cation exchanger. Organics trapped by the Carbopack cartridge are eluted by passage of 6 ml of methylene chloride-methanol (95:5, v/v). Anilines and other basic compounds are quantitatively subtracted from the solvent system while flowing through the cation-exchange cartridge. After evaporation and redissolution, the sample is subjected to reversed-phase gradient elution high-performance liquid chromatography with UV detection at 250 nm. Recoveries of phenylureas added to water at levels between 30 and 3000 ng/l were higher than 92%. The limit of detection was about 1 ng/l, for a 2-1 sample. With respect to an octadecyl (C18)-bonded silica cartridge, the Carbopack B cartridge had a far better extraction efficiency for polar phenylureas.  相似文献   

3.
The performance of mass spectrometric (MS) detection and UV detection in combination with reversed-phase liquid chromatography without and with the use of coupled column RPLC (LC-LC) has been compared for the trace analysis of phenylurea herbicides in environmental waters. The selected samples of this comparative study originated from an inter-laboratory study. For both detection modes, a 50 mm x 4.6 mm I.D. column and a 100 mm x 4.6 mm I.D. column packed with 3 microm C18 were used as the first (C-1) and second (C-2) column, respectively. Atmospheric pressure chemical ionization mass spectrometry was performed on a magnetic sector instrument. The LC-LC-MS analysis was carried out on-line by means of direct large volume (11.7 ml) injection (LVI). The performance of both on-line (LVI, 4 ml of sample) and off-line LC-LC-UV (244 nm) analysis was investigated. The latter procedure consisted of a solid-phase extraction (SPE) of 250 ml of water sample on a 500 mg C18 cartridge. The comparative study showed that LC-LC-MS is more selective then LC-LC-UV and, in most cases, more sensitive. The LVI-LC-LC-MS approach combines direct quantification and confirmation of most of the analytes down to a level of 0.01 microg/l in water samples in less then 30 min. As regards LC-LC-UV, the off-line method appeared to be a more viable approach in comparison with the on-line procedure. This method allows the screening of phenylurea's in various types of water samples down to a level of at least 0.05 microg/l. On-line analysis with LVI provided marginal sensitivity (limits of detection of about 0.1 microg/l) and selectivity was sometimes less in case of surface water samples. Both the on-line LVI-LC-LC-MS method and the LC-LC-UV method using off-line SPE were validated by analysing a series of real-life reference samples. These samples were part of an inter-laboratory test and contained residues of herbicides ranging from 0.02 to 0.8 microg/l. Beside good correlation between the methods the data agreed very well with the true values of the samples.  相似文献   

4.
A gas chromatographic/mass spectrometric (GS/MS) method was developed for the multiple determination of pesticides in sediment. The investigated pesticides included 85 compounds, i.e., 13 fungicides, 43 herbicides, and 29 insecticides. The pesticides were extracted from sediment samples by an ultrasonically assisted procedure. The extract was cleaned up by using reversed-phase column chromatography followed by normal-phase column chromatography. A styrene-divinylbenzene copolymer cartridge and a silica gel cartridge were used as the reversed-phase column and the normal-phase column, respectively. The compounds were determined by GC/MS with 2 internal standard compounds. The overall recoveries were 70-105%, and the relative standard deviations ranged from 1.5 to 18%. The minimum detectable concentrations were 2-10 microg/kg. This method was successfully applied to sediment samples from the Shin River in Niigata, Japan. Twenty-five pesticides (6 fungicides, 11 herbicides, and 8 insecticides) were detected in the sediment samples. The concentrations of the detected pesticides ranged from 3 to 69 microg/kg. Herbicides were found May through July; insecticides and fungicides were found July through August, and during July through September, respectively. The presence of pesticides in the river sediment was correlated with the time of pesticide application in the Shin River basin.  相似文献   

5.
Summary A new method for the simultaneous identification and quantification of base/neutral and acidic pesticides at a low nanogram per liter concentration level in natural waters is presented. The method includes enrichment of the compounds by solid phase extraction on graphitized carbon black, followed by sequential elution of the base/neutral and acidic pesticides. Identification and quantification of the compounds is performed with HPLC-ESI-MS. This procedure involves passing 1 L of ground water and 2 L of drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. A conventional 4.6-mm-i.d. reversed phase LC C-18 operating with a 1 mL min−1 flow of the mobile phase was used to chromatograph the analytes. A flow of 100 μL min−1 of the column effluent was diverted to the ESI source. The ESI source was operated in positive ion mode for base/neutral pesticides and in negative-ion mode for acid pesticides. For the analyte considered, the response of the mass detector was linearly related to the amount of the analytes injected between 5 and 250 ng. In all cases, recoveries of the analytes were better than 90%. The limit of detection (signal-to-noise ratio=3) of the method for the pesticides considered in drinking water samples was estimated to be about 3–10 ng L−1.  相似文献   

6.
A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min.The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.  相似文献   

7.
A simple and rapid method has been developed for herbicides in water using temperature-responsive liquid chromatography (LC) and a column packed with poly(N-isopropylacrylamide) (PNIPAAm), a polymer anchored on the stationary-phase surface of modified silica. PNIPAAm reversibly changes its hydrophilic/hydrophobic properties in water in response to temperature. The method was used to determine five sulfonylurea and three urea herbicides. Separation was achieved with a 10 mM ammonium acetate (pH 3.0) isocratic aqueous mobile phase, and by changing the column temperature. The analytes were extracted from water by off-line solid-phase extraction (SPE) with an N-vinyl-pyrrolidone polymer cartridge. The average recoveries of the eight herbicides from spiked pure water, tap water and river water were 70-130% with relative standard deviations (RSDs) of <10%. The limits of quantitation (LOQ) of the eight herbicides were between 1 and 4 microg l(-1).  相似文献   

8.
An automated analyzer for vancomycin in rat plasma by column-switching high-performance liquid chromatography (HPLC) with UV detection was developed. The method includes in-line extraction of vancomycin by ion-exchange cartridge column and a separation on a reversed-phase column with UV detection at 215 nm. Plasma samples were diluted by mobile phase solution and directly injected to HPLC. Vancomycin was quantitatively recovered from rat plasma samples. The separation was completed within 15 min. The calibration curve was linear over the range from 0.5 to 100 microg/mL with the detection and quantification limits of 0.5 microg/mL (2.5 ng on column; signal-to-noise ratio = 3). The values of precision in intra- and inter-day assays (n = 3) were less than 1.92 and 3.69%, respectively. This method does not require time-consuming pre-treatment and is suitable for the routine assay of plasma samples.  相似文献   

9.
Zhang Y  Yang J  Shi R  Su Q  Yao L  Li P 《Journal of separation science》2011,34(14):1675-1682
A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples.  相似文献   

10.
建立了蔬菜中15种苯脲除草剂残留的固相萃取-在线柱后紫外光分解和衍生化的高效液相色谱荧光检测分析方法。样品用乙腈提取,弗罗里硅土固相萃取柱净化,目标化合物由反相C18柱分离,经柱后紫外光分解和衍生化后进行荧光检测。对样品的前处理条件、液相色谱分离、柱后紫外光分解和衍生条件等进行了详细的研究。15种苯脲除草剂的高效液相色谱分离在乙腈-水梯度洗脱下完成,目标物的保留时间为9~31 min,线性范围内线性关系良好,相关系数为0.9986~1.0000;在洋葱、菠菜、黄瓜等样品中3个加标水平的平均回收率(n=3)为75.3%~121.6%,相对标准偏差为0.4%-11.6%;15种苯脲除草剂在蔬菜中的检出限为0.005~0.05 mg/kg。该方法操作简便、灵敏度高、选择性好,符合多种农药残留分析的要求。  相似文献   

11.
Summary Selective on-line solid phase extraction (SPE) and liquid chromatography determination (HPLC) of diquat, paraquat and difenzoquat from environmental water samples has been accomplished with Graphitized Carbon Black (GCB) as both extraction and analytical columns. The method involved passing of 50 mL of water through a cartridge filled with Carbograph. In the elution step, the herbicides were transferred from the cartridge to the analytical column (Hypercarb) by mean of a gradient of pH 3 aqueous solution of tetramethylammonium hydroxide (TMAOH) and ammonium sulphate and methanol. Hypercarb columns were found to give a low probability of false positives for bypiridylium herbicides and are very selective for polar compounds. Recovery was better than 80 %. The breakthrough volume was studied with distilled water spiked with the herbicides at various concentration levels (from 0.1 to 20 μg L−1). The limits of quantification of the method were lower than 0.1 μg L−1. The total analytical method was applied to surface waters from Torreblanca Nature Park (Castelló, Spain). Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996.  相似文献   

12.
固相萃取-离子色谱法测定饮用水中的痕量卤代乙酸   总被引:3,自引:0,他引:3  
孙迎雪  黄建军  顾平 《色谱》2006,24(3):298-301
建立了固相萃取-离子色谱(SPE-IC)测定饮用水中痕量卤代乙酸(HAAs)(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸和二溴乙酸)的方法。固相萃取采用LiChrolut EN SPE柱来进行痕量待测物的预浓缩(25倍)和基体杂质的消除,用NaOH(10 mmol/L)洗脱;色谱分离采用亲水性、高容量、氢氧化物选择型阴离子交换柱Dionex IonPac AS16(250 mm×4 mm i.d.),以NaOH为流动相进行浓度梯度淋洗,淋洗速度为0.8 mL/min,电导检测,进样量为500 μL。结果表明,用SPE-IC法测定HAAs,一溴乙酸的检测限为12.5 μg/L,其余4种HAAs的检测限为0.38~1.69 μg/L。该法可实现对饮用水中痕量卤代乙酸的测定。  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method for phenoxy acid herbicides using precolumn derivatization with 9-anthryldiazomethane (ADAM) is presented. The phenoxy acid herbicides investigated were (2,4-dichlorophenoxy)acetic acid, (4-chloro-2-methylphenoxy)acetic acid, 2-(4-chloro-2-methylphenoxy)propionic acid and (4-chloro-2-methylphenoxy)butyric acid. These herbicides reacted with ADAM under mild conditions and were converted into the corresponding fluorescent derivatives. The ADAM derivatives were separated by reversed-phase HPLC and determined using a fluorescence detector. The detection limits were about 500 pg per injection. For the application of ADAM to the determination of these herbicides in ground waters, the recoveries were more than 93% and the average relative standard deviation was 6.0% at 0.5 microgram/l. The procedure is useful as a screening method for phenoxy acid herbicides in ground water samples.  相似文献   

14.
微波浓缩-离子法测定饮用水中的痕量溴酸根和高氯酸根   总被引:26,自引:0,他引:26  
刘勇建  牟世芬  杜兵  林爱武 《色谱》2002,20(2):129-132
 建立了一种简便的用于浓缩水中痕量BrO3 -和ClO4 -的样品前处理方法。水样经OnGuardAg柱过滤 ,用微波炉在 15min内可浓缩 2 0倍 ,所测离子的回收率均高于 90 %。又采用IonPacAS16型亲水性柱 ,用 15 0 μL定量环 ,以NaOH为流动相、梯度淋洗方式 ,在 35min内测定了包括BrO3 -和ClO4 -在内的 8种离子。BrO3 -和ClO4 -的检测限分别为 0 10 μg/L和 0 2 0 μg/L。该方法在实际应用中有较大的参考价值。  相似文献   

15.
气相色谱法同时测定玉米中12种三嗪类除草剂的残留量   总被引:6,自引:0,他引:6  
张敬波  姜文凤  董振霖  赵守成  卫锋 《色谱》2006,24(6):648-651
建立了气相色谱-氮磷检测器同时检测玉米中12种三嗪类除草剂(西玛通、西玛津、阿特拉津、扑灭津、特丁通、特丁津、环丙津、西草净、扑草净、特丁净、甲氧丙净、环嗪酮)残留量的方法。玉米样品用乙腈萃取,强阳离子交换(SCX)固相萃取柱净化后,用DB-5弹性石英毛细管柱(30 m×0.25 mm i.d.×0.25 μm)分离样品,氮磷检测器测定。12种三嗪类除草剂在0.01~2.0 mg/L范围内线性关系关系良好,相关系数均大于0.998;最低检测限为0.01 mg/kg;添加回收率为84.0%~106.8%;相对标准偏差为0.9%~4.7%。  相似文献   

16.
王家斌  吴芳玲  赵琦 《色谱》2015,33(8):849-855
采用C18毛细管整体柱作为固相微萃取整体柱,构建在线固相微萃取-高效液相色谱联用系统,同步富集检测环境水样中的5种苯氧羧酸类除草剂。详细考察了联用系统运行条件对富集检测的影响。联用系统运行最佳参数为:固相微萃取整体柱长度20 cm,进样流速0.04 mL/min,进样13 min,洗脱流速0.02 mL/min,洗脱5 min。在最佳条件下,5种苯氧羧酸类除草剂的检出限为:9 μg/L (苯氧丙酸)、4 μg/L (2-(2-氯)-苯氧丙酸)、4 μg/L (2-(3-氯)-苯氧丙酸)、5 μg/L (2,4-二氯苯氧乙酸)、5 μg/L (2-(2,4-二氯苯氧基)丙酸)。与HPLC系统直接进样对比,联用系统对5种检测对象表现出优良的富集能力。5种苯氧羧酸类除草剂的回收率在79.0%~98.0%之间(RSD≤3.9%)。该方法成功应用于水样中5种苯氧羧酸类除草剂的检测,结果令人满意。  相似文献   

17.
李方实  Dieter MARTENS 《色谱》2001,19(6):534-537
 建立了固相萃取 高效液相色谱 (SPE HPLC)同时测定水中 16种苯脲除草剂的方法。HPLC采用Lichrospher 10 0RP 18e柱 ,紫外检测波长为 2 40nm ,流动相为乙腈水溶液 ,流速为 1mL/min ,采用梯度洗脱方式。HPLC分析时间少于 2 0min。水中的除草剂用C18柱固相萃取富集 10 0 0倍。在优化的条件下 ,各成分的添加回收率为 87 8%~ 10 3 7%。  相似文献   

18.
There is increasing interest in and demand for simultaneously monitoring pesticides as well as related degradation products (DPs) in natural waters, as the latter compounds can be even more toxic than the former ones. A method for determining parts per trillion levels of phenylurea herbicides and their DPs, that is their dealkylated forms and aromatic amines, is described. This method is based on solid-phase extraction with a Carbograph 4 cartridge followed by liquid chromatography (LC) with electrospray (ES) mass spectrometric detection. A study aimed at optimizing the response of the ES-MS detector for very weakly basic chloroanilines was conducted. Results showed that ion signal intensities of the above species were dependent on the composition of the LC mobile phase to an astonishing degree. At concentration levels of a few hundred ng/l, laboratory experiments showed that the aromatic amines considered here were mostly associated to dissolved humic acids (HAs) by both reversible and irreversible bindings. The addition of a reducing agent, i.e., NaBH4, succeeded in liberating that fraction of aromatic amines, which being reversibly bound to quinoidal structures of HAs are bioavailable. Analyte recoveries were better than 85% on extraction from 4 l of drinking water (spike level, 25 ng/l), 2 l of ground water (spike level, 50 ng/l) and 0.5 l of river water (spike level, 200 ng/l). Relative standard deviations ranged between 4.6 and 20% for drinking water, 4.3 and 15% for ground water, 5.9 and 13% for river water. Method detection limits calculated for drinking water, groundwater and surface water were between 3 and 11, 6 and 21, 36 and 75 ng/l, respectively.  相似文献   

19.
The analytical HPLC procedure for the quantitation of trace amounts of phenol and chlorophenols in aqueous media has been supplemented with the on-line preconcentration of phenols in a sorption cartridge packed with microporous hyper-crosslinked polystyrene. The cartridge is coupled in succession with a reversed-phase analytical column, which is operated isocratically in an aqueous acetonitrile eluent (1:1, v/v). Phenol concentrations down to 0.5 μg/l can be detected using a simple 254 nm UV detector. Biporous hyper-crosslinked polystyrene-type sorbents were shown to effectively purify about 100 bed volumes of water from phenol under neutral or acidic conditions and linear flow rates up to 4 cm/min, which could be of great practical importance. Rapid and quantitative elution of sorbates from the hyper-crosslinked polystyrene materials is facilitated by the unique ability of the latter to additionally swell with organic or aqueous-organic eluents applied.  相似文献   

20.
Abstract

A rapid, sensitive and simple to operate HPLC method for the simultaneous determination of carbamazepine, carbamazepine 10,11-epoxide and 10,11-dihydro-10,11-trans-dihydroxycarbamazepine in plasma is described. The drug and its metabolites are extracted from plasma using commercially available reversed-phase octadecylsilane bonded-silica columns (Bond Elut C18, 2.8 ml capacity). Separation was achieved by reversed-phase chromatography, using a mobile phase consisting of acetonitrile - methanol - water (19:37:44) at a flow-rate of 1.8 ml/min in conjunction with a Waters Assoc. Nova-Pak C18 column. The analytical column, in Radial-Pak cartridge form, was used in combination with a Waters Assoc. Z-module RCSS and protected by a Waters Assoc. Guard-Pak precolumn module containing a Guard-Pak μBondapak C18 insert. Using ultraviolet detection at 214 nm, levels in the region of 50–100 ng/ml for CBZ and its metabolites can be measured with only 250 μl of plasma. The method has been used to determine steady-state concentrations of the drug and its metabolites in paediatric patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号