首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ~10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic properties of contacted surfaces. For example, in the case of a silicon-on-insulator field effect transistors are in contact with PDMS and subsequent delamination leads to threshold voltage shifts that exceed 500 mV.  相似文献   

2.
This paper describes the fabrication and characterization of ionic electrets-materials that bear a long-lived electrostatic charge because of an imbalance between the number of cationic and anionic charges in the material. Crosslinked polystyrene microspheres that contain covalently bound ions and mobile counterions transfer some of their mobile ions in air, in the absence of bulk liquid, to another material upon contact. According to the ion-transfer model of contact electrification, this selective transfer of mobile ions yields microspheres that have a net electrostatic charge. A tool that operates on the principle of electrostatic induction measures the charge on individual microspheres (50-450 microm in diameter). Microspheres with a variety of covalently bound ionic functional groups (tetraalkylammonium, alkyltriphenylphosphonium, alkylsulfonate, and arylsulfonate) acquire charges consistent with this ion-transfer mechanism. The charge on a microsphere is proportional to its surface area (ca. 1 elementary charge per 2000 nm2) and close to the theoretical limit imposed by the dielectric breakdown of air. The charge density in an atmosphere of SF6 is more than twice that in an atmosphere of N2. These observations suggest that the charge density of these ionic electret microspheres is limited by the dielectric breakdown of the surrounding gas. Functionalizing the surfaces of glass or silicon with covalently bound ions and mobile counterions generates ionic electrets from these inorganic substrates. Soft lithography can pattern charge on a planar silicon surface (with oxide) and on the surface of 250-mum glass microspheres.  相似文献   

3.
This Review discusses ionic electrets: their preparation, their mechanisms of formation, tools for their characterization, and their applications. An electret is a material that has a permanent, macroscopic electric field at its surface; this field can arise from a net orientation of polar groups in the material, or from a net, macroscopic electrostatic charge on the material. An ionic electret is a material that has a net electrostatic charge due to a difference in the number of cationic and anionic charges in the material. Any material that has ions at its surface, or accessible in its interior, has the potential to become an ionic electret. When such a material is brought into contact with some other material, ions can transfer between them. If the anions and cations have different propensities to transfer, the unequal transfer of these ions can result in a net transfer of charge between the two materials. This Review focuses on the experimental evidence and theoretical models for the formation of ionic electrets through this ion-transfer mechanism, and proposes--as a still-unproved hypothesis--that this ion-transfer mechanism may also explain the ubiquitous contact electrification ("static electricity") of materials, such as organic polymers, that do not explicitly have ions at their surface.  相似文献   

4.
Charged liquid droplets are typically generated by a high‐voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged—thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply.  相似文献   

5.
Flow electrification in nonaqueous suspensions has been scarcely reported in the literature but can significantly affect colloidal stability and (phase) behavior, perhaps even without being recognized. We have observed it in shear flow experiments on concentrated binary suspensions of hydrophobized silica particles in chloroform. In this low-polarity solvent, electrical charges on the large-particles' surfaces manifest themselves via long-ranged forces, because hardly any screening can take place through counterions. By shearing the suspension for a prolonged time, we could demonstrate that the effective interactions between the large particles change from weakly attractive (due to the small particles) to strongly repulsive (due to acquired Coulomb interactions). One of the conditions required for flow electrification was the presence of a glass surface in the shear cell. A spectacular manifestation of the phenomenon was observed with confocal video microscopy. First, the formation of large-particle aggregates was seen, while subsequently (over a long shearing time) the aggregates disintegrated into small entities, mostly primary particles. The spatial distribution of these entities in the quiescent state after stopping the flow showed evidence for acquired long-range repulsion. The occurrence of flow electrification was further corroborated by control experiments, where no flow was imposed, antistatic agent was added, or the glass bottom was coated with a conducting (indium tin oxide, ITO) layer: here, the aggregates kept growing until they became very large. To further diagnose the phenomenon, we have also done experiments in which an external electric field was applied (via the ITO layer) to an aggregated suspension. When the lower electrode was given the lowest potential, the aggregates were found to move away from the bottom and disintegrate. The qualitative similarity hereof with the flow electrification experiment suggests that in the latter, the glass acquired negative charges. After prolonged application of an external electric field, we observed segregation into regions enriched in large particles and regions completely depleted of them. In the quiescent fluid these regions exist as isolated units, but in shear flow they merge into bands, a behavior which resembles shear banding.  相似文献   

6.
Triboelectric nanogenerator (TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator (STENG) extends potential application because a finger can be used as one friction surface in the contact electrification. In this work, a fully flexible STENG has been made, consisting of polydimethylsiloxane(PDMS) with micro-nano structures on its observe side and a flexible electrode on its reverse side. The femtosecond laser ablation was introduced to make micro-nano structures on PDMS and Ag nanowires (Ag NWs) were embedded in PDMS to serve as flexible induction electrode. It has been demonstrated that the energy conversion efficiency increases greatly because of the existing micro-nano structures on PDMS. Further, the mechanism of STENG was proved. Owing to the fully flexible characteristics in both the electrode and PDMS, STENG works well when it is adhered on any subject, for example, on clothes by tape.  相似文献   

7.
Summary The preparation of teflon capillary columns employing direct coating of the stationary phase to the chemically modified teflon surface and the role of the chemically modified teflon in the separation mechanism are described. Two types of contributions from the modified teflon have been observed: nonspecific adsorption of the carbon surface and specific interactions of polar groups in the carbon skeleton. The use of polar liquid phases can eliminate adsorption due to the presence of polar groups in the modified teflon.  相似文献   

8.
Static electrification of a solid oxide, say a semiconducting oxide in liquid metal, is mainly due to electron transfer between two phases. Excess electrons in the liquid metal phase provided by the oxide give rise to an electrical double layer at the interface. The electrical double layer may be divided into three parts, an immobile inner layer, a compressed diffuse layer, and a flat layer extending into the bulk liquid metal. Differential potential analysis and the induced emf method were used to measure the potential of the compressed diffuse layer and the excess electron density of the flat layer, respectively. Results show that most oxides in liquid metals carry positive charges on their surfaces and the potentials of the compressed diffuse layer are in the range of 3 to 42 microV. Such a low potential implies that the diffuse layer is considerably compressed. The excess electron densities of the flat layer are on the order of 10(22) electrons/m(3) of Hg and their contributions to surface charges of oxide are in the range of 10(17) to 10(18) charges/m(2) for the oxide/mercury systems with a solid density of 0.3 wt% at room temperature.  相似文献   

9.
The processes of formation and accumulation of electric charges in the splitting and deformation of cavitation bubbles in an ultrasonic wave field are considered in terms of the local electrification theory. The influence of different factors on the electrification of the bubble-liquid interface is discussed. It is established that, in the splitting of a cavitation bubble and, possibly, in its deformation, the local field strength near the bubble surface dramatically depends on the radius of the neck formed in the bubble. It is shown that, although the stationary concentration of cavitation bubbles may be very high (~104–105 cm?3), the probability for several deformed cavitation bubbles of “required size” to emit luminescence at a given instant of time depends on the ultrasound intensity and other test conditions, a conclusion supported by experimental data.  相似文献   

10.
Measurements of the contact radius as a function of applied force between a mica surface and a silica surface (mica/silica) in air are reported. The load/unload results show that the contact radius generally increases with applied force. Because of the presence of charging due to contact electrification, both a short-range van der Waals adhesion force and longer-range electrostatic adhesive interaction contribute to the measured force. The results indicate that approximately 20% of the pull-off force is due to van der Waals forces. The contact radius versus applied force results can be fit to Johnson-Kendall-Roberts (JKR) theory by considering that only the short-range van der Waals forces contribute to the work of adhesion and subtracting a constant longer-range electrostatic force. Also, an additional and unexpected step function is superimposed on the contact radius versus applied force curve. Thus, the contact diameter increases in a stepped dependence with increasing force. The stepped contact behavior is seen only for increasing force and is not observed when symmetric mica/mica or silica/silica contacts are measured. In humid conditions, the contact diameter of the mica/silica contact increases monotonically with applied force. Friction forces between the surfaces are also measured and the shear stress of a mica/silica interface is 100 times greater than the shear stress of a mica/mica interface. This large shear stress retards the increase in contact area as the force is increased and leads to the observed stepped contact mechanics behavior.  相似文献   

11.
The electrification of solid porous adsorbents of the clay type was studied. It was found by the thermally stimulated relaxation method that clays contained centers of the accumulation of surface and volume charges. Adsorbent structural changes were studied by X-ray diffraction. Original Russian Text ? A.M. Gashimov, M.A. Gasanov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 7, pp. 1352–1355.  相似文献   

12.
Recent years have witnessed intense interest in multifunctional surfaces that can be designed to switch between different functional states with various external stimuli including electric field, light, pH value, and mechanical strain. The present paper is aimed to explore whether and how a surface can be designed to switch between superhydrophobicity and superhydrophilicity by an applied strain. Based on well-established theories of structure buckling and solid-liquid contact, we show that this objective may be achieved through a hierarchically wrinkled surface. We derive general recursive relations for the apparent contact angle at different levels of the hierarchical surface and investigate the thermodynamic stability of different contact states. Our study may provide useful guidelines for the development of multifunctional surfaces for many technological applications.  相似文献   

13.
<正> 自1969年日本学者Kawai发现PVDF驻极体具有强压电性以来,PVDF作为一种换能材料已得到广泛重视,七十年代中期至今,在应用上获得了可喜的进展。 然而到目前为止,对其压电性机制的研究仍无定论,多数人认为PVDF的压电性是由它晶区的固有特性即体积极化度所引起,并且Scheinbeim等人的工作表明,PVDF的  相似文献   

14.
Many unit operations required in microfluidics can be realised by electrokinetic phenomena. Electrokinetic phenomena are related to the presence of electrical surface charges of microfluidic substrates in contact with a liquid. As surface charges cannot be directly measured, the zeta potential is considered as the relevant parameter instead. PMMA is an attractive microfluidic substrate since micron‐sized features can be manufactured at low costs. However, the existence of PMMA surface charges is not well understood and the zeta potential data found in the literature show significant disagreement. In this article, we present a thorough investigation on the zeta potential of PMMA. We use computations of the potential distribution in the electrical double layer to predict the influence of various electrolyte parameters. The generated knowledge is compared to extensive experiments where we investigate the influence of ionic strength, pH, temperature and the nature of the electrolyte. Our findings imply that two different mechanisms influence the zeta potential depending on the pH value. We propose pure shielding in the acidic and neutral milieus while adsorption of co‐ions occurs along with shielding in the alkaline milieu.  相似文献   

15.
Contact angles of a homologous series of naphthalene compounds on films of a fluorinated acrylate polymer (EGC-1700) deviate from an ideal pattern of contact angles. The deviations increase with the electronegativity of the constituent atoms of the liquid molecules. The results suggest that an uneven distribution of electrostatic charges over the molecules creates strong dipole moments, giving rise to fairly strong dipole-dipole and dipole-induced dipole interactions between liquid molecules and the EGC-1700 chains, which have large dipole moments. In comparison, contact angles of the same probe liquids on the films of Teflon AF 1600, which have small dipole moments, fall on a smooth curve representing the surface tension of the polymer film.  相似文献   

16.
The force between two parallel charged flat surfaces, with discrete surface charges, has been calculated with Monte Carlo simulations for different values of the electrostatic coupling. For low electrostatic coupling (small counterion valence, small surface charge, high dielectric constant, and high temperature) the total force is dominated by the entropic contribution and can be described by mean field theory, independent of the character of the surface charges. For moderate electrostatic coupling, counterion correlation effects lead to a smaller repulsion than predicted by mean field theory. This correlation effect is strengthened by discrete surface charges and the repulsive force is further reduced. For large electrostatic coupling the total force for smeared out surface charges is known to be attractive due to counterion correlations. If discrete surface charges are considered the attractive force is weakened and can even be turned into a repulsive force. This is due to the counterions being strongly correlated to the discrete surface charges forming effective, oppositely directed, dipoles on the two walls.  相似文献   

17.
In this work, the objective was to synthesize a compatibilizer that can electrostatically adsorb onto cellulose fibers, in fiber-based composites, to enhance the interaction between the fibers and non-polar polymer matrices. This physical route to attach the compatibilizer onto and thereby modify a fiber surface is convenient since it can be performed in water under mild conditions. Polystyrene (PS) was used for the high molecular weight, non-polar, block and poly(dimethylamino)ethyl methacrylate (PDMAEMA) was used as the polar block, which was subsequently quaternized to obtain cationic charges. The block copolymer self-assembles in water into cationic micelles and the adsorption to both silicon oxide surfaces and cellulose model surfaces was studied. The micelles spread out on the surface after heat treatment and contact angle measurements showed that the contact angles against water increased significantly after this treatment. AFM force measurements were performed with a PS probe to study the adhesive properties. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglements between the polystyrene blocks at the treated surface and the probe. This demonstrates that the use of this type of amphiphilic block copolymer is a promising route to improve the compatibility between charged reinforcing materials, such as cellulose-based fibers/fibrils, and hydrophobic matrices in composite materials.  相似文献   

18.
Molecular dynamics simulations of NaCl fluid are used to understand the behavior of ionic fluid to screen the field generated by charges on the ionic crystal surfaces in absence of any external electric field. The NaCl fluid in the strongly coupled regime (corresponding to the melt) in contact with the charged octopolar (111) NaCl surface shows that the spatial correlations decay in an oscillatory manner, with a screening length lambdaQ given by the envelope of the damped oscillations. By contrast to the Debye-Huckel theory, in the strongly coupled regime, lambdaQ increases with increasing coupling strength (also seen in bulk ionic simulations). The NaCl fluid confined between neutral (100) NaCl surfaces also shows weak oscillatory charge decay near the surface. Similar oscillatory exponential decay was seen when the NaCl fluid was confined between two analytically smooth neutral walls. The origin of these oscillations was due to the difference in ion sizes. NaCl fluid confined between neutral octopolar (110) and dipolar (110) surface show stronger density oscillations than (100) surface but comparatively very weak charge oscillations. This paper shows that the strength of the charges on the crystal surfaces is enough to induce a characteristic spatial distribution of charges in the contacting fluid and the extent of distribution depends on the type of surface.  相似文献   

19.
In touch: the outcome of contact electrification between dielectrics depends not only on the transfer of charge but also on the transfer of material. Although only minute quantities of materials are being exchanged during contact, they can reverse the polarity of dielectrics. The reported results corroborate the mosaic model and suggest that the observations are because of the mechanical softness/hardness of the materials.  相似文献   

20.
 For a metallic surface (Au) and highly doped (N+) and (P+) semiconductor surfaces (GaInAs) and for localised zones (2 × 2 μm) we have measured using an electrostatic force microscope the variation of the gradient of the electrostatic force by the signal (phase of the oscillating movement of the metallised tip) as a function of the sample-tip potential difference (− 4 V to + 4 V). In both cases the signal shows a quadratic variation with the sample-tip potential difference. The variation of the signal is of the order of magnitude of the theoretical predictions obtained by modelling the shape of the tip by a truncated cone + a portion of a sphere. Using the parabolic curve that fits the experimental results, the value of the contact potential difference, corresponding to a zero value of the electrostatic force gradient, can be determined with an accuracy of 50 mV. The contact potential difference, measured between the metallised tip and the metal (Au), taken as a reference, allows the work function of the metal tip to be determined (5.25 eV). The values of the contact potential difference for the GaInAs (N+) and (P+) surfaces can be explained by the Fermi level pinning due to surface charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号