首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阎世英  朱正和 《中国物理》2004,13(12):2053-2057
Density functional method (DFT) (B3p86) of Gaussian98 has been used to optimize the structure of the Tc_2 molecule. The result shows that the ground state for Tc_2 molecule is an 11-multiple state and its electronic configuration is {}^{11}Σ_g^-, which shows the spin polarization effect of Tc_2 molecule of a transition metal element for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher energy states. So, that the ground state for Tc_2 molecule is an 11-multiple state is indicative of the spin polarization effect of Tc_2 molecule of a transition metal element: that is, there exist 10 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Tc_2 molecule is minimized. It can be concluded that the effect of parallel spin of the Tc_2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state {}^{11}Σ_g^- and other states of Tc_2 molecule are derived. Dissociation energy D_e for the ground state of T_{c2} molecule is 2.266eV, equilibrium bond length R_e is 0.2841nm, vibration frequency ω_e is 178.52cm^{-1}. Its force constants f_2, f_3, and f_4 are 0.9200aJ·nm^{-2}, --3.5700aJ·nm^{-3}, 11.2748aJ·nm^{-4} respectively. The other spectroscopic data for the ground state of Tc_2 molecule ω_eχ_e, B_e, α_e are 0.5523cm^{-1}, 0.0426cm^{-1}, 1.6331×10^{-4}cm^{-1} respectively.  相似文献   

2.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

3.
阎世英  朱正和 《中国物理》2006,15(7):1517-1521
This paper uses the density functional theory (DFT)(B3p86) of Gaussian03 to optimize the structure of Fe2 molecule. The result shows that the ground state for Fe2 molecule is a 9-multiple state, which shows spin polarization effect of Fe2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, that the ground state for Fe2 molecule is a 9-multiple state is indicative of the spin polarization effect of Fe2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of the Fe2 molecule is minimized. It can be concluded that the effect of parallel spin of the Fe2 molecule is laFger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of Fe2 molecule are derived. Dissociation energy De for the ground state of Fe2 molecule is 2.8586ev, equilibrium bond length Re is 0.2124nm, vibration frequency we is 336.38 cm^-1. Its force constants f2, f3, and f4 are 1.8615aJ.nm^-2, -8.6704aJ.nm^-3, 29.1676aj.nm^-4 respectively. The other spectroscopic data for the ground state of Fe2 molecule weXe, Be, αe are 1.5461 cm^-1, 0.1339cm^-1, 7.3428× 10^-4 cm^-1 respectively.  相似文献   

4.
Spin polarization effect for Mn2 molecule   总被引:2,自引:0,他引:2       下载免费PDF全文
阎世英  徐国亮 《中国物理》2007,16(3):686-691
The density functional theory method (DFT) (b3p86) of Gaussian 03 has been used to optimize the structure of the Mn2 molecule. The result shows that the ground state of the Mn2 molecule is an 11-multiple state, indicating a spin polarization effect in the Mn2 molecule, a transition metal element molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Mn2 molecule being of an 11-multiple state is the indicative of spin polarization effect of the Mn2 molecule among those in the transition metal elements: that is, there are 10 parallel spin electrons in a Mn2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacious orbitals so that the energy of the Mn2 molecule is minimized. It can be concluded that the effect of parallel spin in the Mn2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and other states of the Mn2 molecule are derived. The dissociation energy De for the ground state of the Mn2 molecule is 1.4477 eV, equilibrium bond length Re is 0.2506 nm, vibration frequency ωe is 211.51 cm^-1. Its force constants f2, f3, and f4 are 0.7240 aJ·nm-2, -3.35574 aJ·nm^-3, 11.4813 aJ·nm^-4 respectively. The other spectroscopic data for the ground state of the Mn2 molecule ωeχe, Be, αe are 1.5301 cm^-1, 0.0978 cm^-1, 7.7825×10^-4 cm^-1 respectively.  相似文献   

5.
阎世英  朱正和 《中国物理 B》2008,17(12):4498-4503
The density functional theory (DFT) method (b3p86) of Gaussian 03 is used to optimize the structure of the Ni2 molecule. The result shows that the ground state for the Ni2 molecule is a 5-multiple state, symbolizing a spin polarization effect existing in the Ni2 molecule, a transition metal molecule, but no spin pollution is found because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Ni2 molecule, which is a 5-multiple state, is indicative of spin polarization effect of the Ni2 molecule, that is, there exist 4 parallel spin electrons in Ni2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Ni2 molecule is minimized. It can be concluded that the effect of parallel spin in the Ni2 molecule is larger than that of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters of the ground state and other states of the Ni2 molecule are derived. The dissociation energy De for the ground state of the Ni2 molecule is 1.835 eV, equilibrium bond length Re is 0.2243 nm, vibration frequency we is 262.35 cm^-1. Its force constants f2, f3 and f4 are 1.1901 aJ.nm^-2, -5.8723 aJ.nm^-3, and 21.2505 aJ.nm^-4 respectively. The other spectroscopic data for the ground state of the Ni2 molecule ωeχe, Be and αe are 1.6315cm 2, 0.1141 cm^-1, and 8.0145× 10^-4 cm^-1 respectively.  相似文献   

6.
阎世英  鲍文胜 《中国物理》2007,16(12):3675-3680
The density functional theory (DFT)(b3p86) of Gaussian 03 has been used to optimize the structure of the Co$_{2}$ molecule, a transition metal element molecule. The result shows that the ground state for the Co$_{2}$ molecule is a 7-multiple state, indicating a spin polarization effect in the Co$_{2}$ molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state is not mingled with wavefunctions of higher-energy states. So for the ground state of Co$_{2}$ molecule to be a 7-multiple state is the indicative of spin polarization effect of the Co$_{2}$ molecule, that is, there exist 6 parallel spin electrons in a Co$_{2}$ molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacial orbitals so that the energy of the Co$_{2}$ molecule is minimized. It can be concluded that the effect of parallel spin in the Co$_{2}$ molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state and the other states of the Co$_{2}$ molecule are derived. The dissociation energy $De$ for the ground state of Co$_{2}$ molecule is 4.0489eV, equilibrium bond length $R_{\rm e}$ is 0.2061~nm, and vibration frequency $\omega _\e $ is 378.13~cm$^{ - 1}$. Its diatomic molecule force constants $f_2$, $f_3$, and $f_4$ are 2.4824~aJ$\cdot$nm$^{ - 2}$, -7.3451~aJ$\cdot$nm$^{ - 3}$, and 11.2222~aJ$\cdot$nm$^{ - 4 }$respectively(1~aJ=$10^{-18}$~J). The other spectroscopic data for the ground state of Co$_{2}$ molecule $\omega_{\e}\chi _{\e}$, $B_{\e}$, and $\alpha_{\e}$ are 0.7202~cm$^{-1}$, 0.1347~cm$^{-1 }$, and 2.9120$\times $ 10$^{-1}$~cm$^{-1}$ respectively. And $\omega_{\e}\chi _{\e}$ is the non-syntonic part of frequency, $B_{\e}$ is the rotational constant, $\alpha_{\e}$ is revised constant of rotational constant for non-rigid part of Co$_2$ molecule.  相似文献   

7.
谢安东 《中国物理》2006,15(2):324-328
Density functional theory (DFT) (B3p86) has been used to optimize the structure of the molecule Ta2. The result shows that the ground state of molecule Ta2 is a 7-multiple state and its electronic configuration is ^7∑u^+, which shows the spin polarization effect for molecule Ta2 of transition metal elements for the first time. Meanwhile, spin pollution has not been found because the wavefunction of the ground state does not mix with those of higher states. So, the fact that the ground state of molecule Ta2 is a 7-multiple state indicates a spin polarization effect of molecule Ta2 of the transition metal elements, i.e. there exist 6 parallel spin electrons and the non-conjugated electrons are greatest in number. These electrons occupy different space orbitals so that the energy of molecule Ta2 is minimized. It can be concluded that the effect of parallel spin of the molecule Ta2 is larger than the effect of the conjugated molecule, which is obviously related to the effect of d-electron delocalization. In addition, the Murrell-Sorbie potential functions with parameters for the ground state ^7∑u^+ and other states of the molecule Ta2 are derived. The dissociation energy De, equilibrium bond length Re and vibration frequency we for the ground state of molecule Ta2 are 4.5513eV, 0.2433nm and 173.06cm^-1, respectively. Its force constants f2, f3 and f4 are 1.5965×10^2aJ.nm^-2, -6.4722×10^3aJ·nm^-3 and 29.4851×10^4aJ·nm^-4, respectively. Other spectroscopic data we xe, Be and αe for the ground state of Ta2 are 0.2078cm^-1, 0.0315 cm^-1 and 0.7858×10^-4 cm^-1, respectively.  相似文献   

8.
郑圆圆  任桂明  陈锐  王兴明  谌晓洪  王玲  袁丽  黄晓凤 《物理学报》2014,63(21):213101-213101
B3LYP/6-311++g**水平上预测了FeH2及FeH稳定构型讨论了其自旋极化效应,并与实验结果进行了比较.结果表明其基态分别为FeH2(5A1)和FeH(4?),自旋态对构型和物理性质均有显著影响.FeH2具有C2v对称性.势能与核间距的关系用4参数Murrell-Sorbie函数进行拟合得到其分析势能函数.由此推导出力常数和光谱数据,并由多体项展式理论导出了基态FeH2分子的分析势能函数.用这个分析势能函数分析表明:H+FeH生成FeH2(C2v)分子通道存在一个4.68 eV深的势阱,易生成H—Fe—H络合物分子.反应Fe+H2→HFeH,?H=-0.08305 eV,是放热反应.  相似文献   

9.
This paper studies the equilibrium structure parameters and the dependences of the elastic properties on pressure for rutile TiO2 by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density functional theory. The obtained equilibrium structure parameters, bulk modulus B0 and its pressure derivative B′0 are in good agreement with experiments and the theoretical results. The six independent elastic constants of rutile TiO2 under pressure are theoretically investigated for the first time. It is found that, as pressure increases, the elastic constants C11, C33, C66, C12 and C13 increase, The variation of elastic constant C44 is not obvious and the anisotropy will weaken.  相似文献   

10.
Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spectroscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are detected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100mW/cm^2 at room temperature (aperture area, 0.24cm^2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.  相似文献   

11.
郝延明  周严  赵淼 《中国物理》2005,14(7):1449-1452
通过X-射线衍射及磁测量手段研究了Dy2AlFe13Mn3化合物的结构及磁性质。研究结果表明Dy2AlFe13Mn3化合物具有六角相的Th2Ni17型结构。通过X-射线热膨胀测定法发现Dy2AlFe13Mn3化合物在245到344K的温度范围内存在负热膨胀现象,其平均热膨胀系数为α=-1.1×10-4K-1K-1。在105到360K的温度范围内,通过比较磁性状态下的晶胞参数和由高温顺磁状态外延得到的低温顺磁状态下的晶胞参数间的差别计算了Dy2AlFe13Mn3化合物的本征磁致伸缩。结果表明Dy2AlFe13Mn3化合物的本征体磁致伸缩ωS在105到245K的温度范围内随着温度的升高而增大,由105K时的7.0×10-3 增加到245K时的9.1×10-3。随着温度的进一步升高,ωS反而减小。沿c轴方向的本征线磁致伸缩λc随着温度的升高而减小。基面内的本征线磁致伸缩λa在105到270K的温度范围内随着温度的升高而增大,从105K时的0.8×10-3增大到270K时的3.4×10-3,然后随着温度的进一步升高而减小。  相似文献   

12.
张莉  罗文浪  阮文  蒋刚  朱正和 《中国物理 B》2008,17(6):2023-2026
Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD、 CASSCF (4,4) and MP2 with the various basis functions 6-311G^**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X^-3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, i.e. B3P86、 CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X^-3∑^-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) i.e. CH4 →CH2+H2, is forbidden and the decomposition type (2) i.e. CH4→CHa+H is allowed for CH4. This is similar to the decomposition of SiH4.  相似文献   

13.
唐军  马军  易鸣  贾亚 《中国物理 B》2008,17(11):4100-4106
The effect of change in concentration of messenger molecule inositol 1,4,5-trisphosphate (IPspiral wave, Ca$^{2 + }$, IPspiral wave, Ca$^{2 + }$, IP$_{3}$Project supported by the National Natural Science Foundation of China (Grant Nos 10575041 and 10747005)0545The effect of change in concentration of messenger molecule inositol 1,4,5-trisphosphate (IP$_{3})$ on intracellular Ca$^{2 + }$spiral pattern evolution is studied numerically. The results indicate that when the IP$_{3}$ concentration decreases from 0.27\,$\mu $M, a physiologically reasonable value, to different values, the spiral centre drifts to the edge of the medium and disappears for a small enough IP$_{3}$ concentration. The instability of spiral pattern can be understood in terms of excitability-change controlled by the IP$_{3}$ concentration. On the other hand, when the IP$_{3}$ concentration increases from 0.27\,$\mu $M, a homogeneous area with a high Ca$^{2 + }$ concentration emerges and competes with the spiral pattern. A high enough IP$_{3}$ concentration can lead the homogeneous area to occupy the whole medium. The instability of spiral pattern is ascribed to the change in stability of a stationary state with a high Ca$^{2 + }$ concentration.  相似文献   

14.
方志杰  石丽洁  刘永辉 《中国物理 B》2008,17(11):4279-4284
This paper studies the electronic structure and native defects in transparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2(M = Sc, Y) is impossible to show n-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.  相似文献   

15.
田晓庆 《物理学报》2008,57(1):286-289
In this paper the growth mechanism of a Te/Bi$_{2}$Te$_{3}$ novel structure is studied by \textit{ab-initio} calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces. The adsorption energy of Te on the Te (001) surface is 3.29 eV, which is about 0.25 eV higher than that of Te on the Te (110). This energy difference makes the preferential growth direction along the $<001>$ direction. In addition, the higher surface energy of Bi$_{2}$Te$_{3}$ (110) and the lattice misfit between crystalline Bi$_{2}$Te$_{3}$ and Te along $<001>$ direction are considered to explain the growth of the Bi$_{2}$Te$_{3}$ nanoplatelets, in which Volmer--Weber model is used. The theoretical results are in agreement with experimental observation.  相似文献   

16.
This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.  相似文献   

17.
Co2MnGa0.5Sn0.5 (CMGS) thin films were epitaxially grown on MgO (0 0 1) substrates by magnetron sputtering and the current spin polarizations of the films with different post annealing conditions were measured by the point contact Andreev reflection method. The film deposited at a substrate temperature of 150 °C had a B2 structure and its spin polarization was estimated to be 59%. The film was ordered to the L21 structure by annealing at 600 °C, and the spin polarization was enhanced to 66%. The spin polarization and the intensity of the L21 diffraction showed clear correlation, suggesting L21 ordering is essential to achieve higher spin polarization of this quaternary Heusler alloy.  相似文献   

18.
B2H6分子的几何构型   总被引:4,自引:0,他引:4       下载免费PDF全文
阎世英  马美仲  朱正和 《物理学报》2005,54(7):3106-3110
采用Gaussian 98程序中B3P86,BP86,B3LYP,BLYP,UHF,HF及LSDA等方法,对B2H6分子可能的D3d,D3h,D2d和D2h平面型状态及立体型状态 的几何构型五种情况的1重态及3重态进行了优化,得到该分子基态为1重态,它的电子状态 是lg,B2H6的几何构型仍然是传统的对 称性为乙烯式的D2h结构 ,其构型如图9所示,其能量最低,是-53.5865H.a.u..两个硼原子与四个H原子所在平面 垂直于两个硼原子及另外二个H原子所在平面,二个硼原子之间的距离是R12=0 .17542nm,B原子及H原子之间的距离是R17=0.13149nm,R13=0. 1188 4nm,它们之间的夹角分别是,∠314=∠526=121.93°,∠817=∠827=96.3°,B2H6中硼原子采用不等性的sp3轨道和另一硼原子的不等性的sp< sup>3轨道 及氢原子的1s轨道 交互重叠生成桥式三中心双电子键.三中心双电子键比双中心双电子键更为稳定,计算结果 也证实了这一点. 关键词: 2H6')" href="#">B2H6 密度泛函 几何构型 优化  相似文献   

19.
杨海贵  戴振文  孙志伟 《中国物理》2006,15(6):1273-1277
The luminescence of Er^3+:YAlO3 in ultraviolet visible and infrared ranges under the 518 nm excitation of the multiples ^2H11/2 have been investigated. Ultraviolet (275 nm and 318 nm), violet (405 nm and 413 nm) and blue (474 nm) upconversion and infrared downconversion luminescence has been observed. By means of measuring the fluorescence decay curves and using the theory of rate equations, the luminescence kinetics was studied in detail and the processes of energy transfer upconversion (ETU) and excitation state absorption (ESA) were proposed to explain the upconversion phenomena.  相似文献   

20.
赵培涛 《物理学报》2008,57(1):335-342
Lidar (Light detection and ranging) has special capabilities for remote sensing of many different behaviours of the atmosphere. One of the techniques which show a great deal of promise for several applications is Raman scattering. The detecting capability, including maximum operation range and minimum detectable gas concentration is one of the most significant parameters for lidar remote sensing of pollutants. In this paper, based on the new method for evaluating the capabilities of a Raman lidar system, we present an evaluation of detecting capability of Raman lidar for monitoring atmospheric CO$_{2}$ in Hefei. Numerical simulations about the influence of atmospheric conditions on lidar detecting capability were carried out, and a conclusion can be drawn that the maximum difference of the operation ranges caused by the weather conditions alone can reach about 0.4 to 0.5km with a measuring precision within 30ppmv. The range of minimum detectable concentration caused by the weather conditions alone can reach about 20 to 35 ppmv in vertical direction for 20000 shots at a distance of 1 km on the assumption that other parameters are kept constant. The other corresponding parameters under different conditions are also given. The capability of Raman lidar operated in vertical direction was found to be superior to that operated in horizontal direction. During practical measurement with the Raman lidar whose hardware components were fixed, aerosol scattering extinction effect would be a significant factor that influenced the capability of Raman lidar. This work may be a valuable reference for lidar system designing, measurement accuracy improving and data processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号