首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new molecular precursor strategy has been used to prepare a series of single-site catalysts that possess isolated iron centers supported on mesoporous SBA-15 silica. The iron centers were introduced via grafting reactions of the tris(tert-butoxy)siloxy iron(III) complex Fe[OSi(O(t)Bu)(3)](3)(THF) with SBA-15 in dry hexane. This complex reacts cleanly with the hydroxyl groups of SBA-15 to eliminate HOSi(O(t)Bu)(3) (as monitored by (1)H NMR spectroscopy) with formation of isolated surface species of the type identical with SiO-Fe-[OSi(O(t)Bu)(3)](2)(THF). In this way, up to 21% of the hydroxyl sites on SBA-15 were derivatized (0.23 Fe nm(-)(2)), and iron loadings in the range of 0.0-1.90% were achieved. The structure of the surface-bound iron species, as determined by spectroscopic methods (electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), UV-vis, and in situ infrared measurements) and by elemental analyses, contains a pseudotetrahedral iron(III) center. The THF ligand of this surface-bound complex was quantitatively displaced by acetonitrile (by (1)H NMR spectroscopy). Calcination of these materials at 300 degrees C for 2 h under oxygen resulted in removal of all organic matter and site-isolated iron surface species that are stable to condensation to iron oxide clusters. Spectroscopic data (UV-vis and EPR) suggest that the iron centers retain a mononuclear, pseudotetrahedral iron(III) structure after calcination. The calcinated, iron-grafted SBA-15 materials exhibit high selectivities as catalysts for oxidations of alkanes, alkenes, and arenes, with hydrogen peroxide as the oxidant.  相似文献   

2.
Mesoporous silica containing a large amount of isolated Ti was prepared from an alkoxytitanosiloxane precursor through a hard template method. Isopropoxytris(tris-tert-butoxysiloxy)titanium (((i)PrO)Ti[OSi(O(t)Bu)(3)](3), TS3) was synthesized and TS3 was mixed with mesoporous carbon (CMK-3), a hard template. The mixture was pyrolyzed at 180 °C to form a composite consisting of titanosilica and the hard template. After calcination at 600 °C for the removal of the carbon template, the titanium species were not transformed to anatase TiO(2), proved by DR-UV-Vis, FTIR, XPS, and XRD, while the ESR results indicated the presence of isolated Ti. The mesoporous structure was verified by SEM, TEM, and N(2) adsorption. The Si/Ti ratio of the product was consistent with that of the precursor. All the results show that the material prepared from the precursor is ordered mesoporous silica containing a large amount of isolated Ti in the frameworks. The use of well-defined alkoxytitanosiloxane precursor leads to the formation of mesoporous silica with exactly controlled composition of titanium with neither loss of Ti nor transformation to anatase.  相似文献   

3.
The alkaline earth metal alkyl complexes [Ba(AlEt(4))(2)](n) and Mg(AlMe(4))(2) were directly grafted onto periodic mesoporous silica MCM-41, which had been dehydroxylated at 270 °C (specific surface area a(s): 1023 m(2) g(-1); pore volume V(p): 1.08 cm(3) g(-1); main pore diameter 3.4 nm). Alternatively, barium alkyl surface species were generated by sequential grafting of MCM-41 with Ba[N(SiHMe(2))(2)](2)(thf)(4) and AlEt(3) to yield the hybrid material AlEt(3)@Ba[N(SiHMe(2))(2)](2)(thf)(4)@MCM-41. For a better understanding of the surface chemistry, AlEt(3)@MCM-41 was also accessed. All hybrid materials were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, elemental analysis, nitrogen physisorption, and solid-state NMR spectroscopy; this clearly revealed distinct surface chemistry for the alkylaluminate-treated materials [Ba(AlEt(4))(2)]@MCM-41 and Mg(AlMe(4))(2)@MCM-41. In an attempt to mimic the surface chemistry, the organometallic precursors were treated with HOSi(OtBu)(3). The reaction of equimolar amounts of {Ba[N(SiHMe(2))(2)](2)}(n) and HOSi(OtBu)(3) produced a mixed silylamido/siloxide cluster of Ba(3)[OSi(OtBu)(3)](3)[N(SiHMe(2))(2)](3) with bridging-only siloxide ligands as well as one bridging and two terminal silylamido ligands. The Schlenk equilibrium was found to govern the [Ba(AlEt(4))(2)](n)-HOSi(OtBu)(3) and Mg(AlMe(4))(2)-HOSi(OtBu)(3) reactions, leading to the isolation of complexes of [Ba(AlEt(4))(2) (toluene)](2) and Mg[OSi(OtBu)(3))](2)(AlMe(3))(2), respectively. Allowing for a donor-induced cleavage of Mg(AlMe(4))(2), the reaction of [MgMe(2)] with one or two equivalents of HOSi(OtBu)(3) was studied. While putative Mg[OSi(OtBu)(3)](Me) and Mg[OSi(OtBu)(3)](2) could not be crystallized from the reaction mixtures, cluster complexes Mg(5)(O)[OSi(OtBu)(3)](5)Me(3) and Mg(4)(OH)(2)[OSi(OtBu)(3)](6) could be unambiguously identified by X-ray crystallography.  相似文献   

4.
Silanolysis of B(O(t)Bu)(3) with 2 and 3 equiv of HOSi(O(t)Bu)(3) led to the formation of (t)BuOB[OSi(O(t)Bu)(3)](2) (1) and B[OSi(O(t)Bu)(3)](3) (2), respectively. Compounds 1 and 2 are efficient single-source molecular precursors to B/Si/O materials via thermolytic routes in nonpolar media, as demonstrated by the generation of BO(1.5).2SiO(2) (BOSi2(xg)) and BO(1.5).3SiO(2) (BOSi3(xg)) xerogels, respectively. Use of a block copolymer template provided B/Si/O materials (BOSi2(epe) and BOSi3(epe)) with a broad distribution of mesopores (by N(2) porosimetry) and smaller, more uniform particle sizes (by TEM) as compared to the nontemplated materials. Hydrolyses of 1 and 2 with excess H(2)O resulted in formation of the expected amounts of (t)BuOH and HOSi(O(t)Bu)(3); however, reaction of 1 with 1 equiv of H(2)O led to isolation of the new boronous acid HOB[OSi(O(t)Bu)(3)](2) (3). This ligand precursor is well suited for the synthesis of new metal (siloxy)boryloxide complexes via proton-transfer reactions involving the BOH group. The reaction of 3 with Cp(2)ZrMe(2) resulted in formation of Cp(2)Zr(Me)OB[OSi(O(t)Bu)(3)](2) (4) in high yield. This rare example of a transition metal boryloxide complex crystallizes in the triclinic space group Ponemacr; and exhibits a crystal structure with an unprecedented number of independent molecules in its asymmetric unit (i.e., Z' = 18 and Z = 36). This unusual crystal structure presented an opportunity to perform statistical analyses of the metric parameters for the 18 crystallographically independent molecules. Complex 4 readily converts to Cp(2)Zr[OSi(O(t)Bu)(3)](2) (5) upon thermolysis or upon dissolution in Et(2)O at room temperature.  相似文献   

5.
Complexes [(BPMEN)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and [(TPA)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (2, TPA = tris(2-pyridylmethyl)amine) are among the best nonheme iron-based catalysts for bioinspired oxidation of hydrocarbons. Using EPR and (1)H and (2)H NMR spectroscopy, the iron-oxygen intermediates formed in the catalyst systems 1,2/H(2)O(2); 1,2/H(2)O(2)/CH(3)COOH; 1,2/CH(3)CO(3)H; 1,2/m-CPBA; 1,2/PhIO; 1,2/(t)BuOOH; and 1,2/(t)BuOOH/CH(3)COOH have been studied (m-CPBA is m-chloroperbenzoic acid). The following intermediates have been observed: [(L)Fe(III)(OOR)(S)](2+), [(L)Fe(IV)═O(S)](2+) (L = BPMEN or TPA, R = H or (t)Bu, S = CH(3)CN or H(2)O), and the iron-oxygen species 1c (L = BPMEN) and 2c (L = TPA). It has been shown that 1c and 2c directly react with cyclohexene to yield cyclohexene oxide, whereas [(L)Fe(IV)═O(S)](2+) react with cyclohexene to yield mainly products of allylic oxidation. [(L)Fe(III)(OOR)(S)](2+) are inert in this reaction. The analysis of EPR and reactivity data shows that only those catalyst systems which display EPR spectra of 1c and 2c are able to selectively epoxidize cyclohexene, thus bearing strong evidence in favor of the key role of 1c and 2c in selective epoxidation. 1c and 2c were tentatively assigned to the oxoiron(V) intermediates.  相似文献   

6.
杨恒权  张高勇  洪昕林  朱银燕 《化学学报》2003,61(11):1786-1791
通过对介孔分子筛HMS和MCM-41表面修饰,将乙二胺基和2,4-戊二酮引入到介 孔分子筛孔道内,制备出乙二胺基和戊二酮官能化介孔分子筛。首次将烯烃环氧化 均相催化剂MoO_2(acac)_2固载到乙二胺基和戊二酮官能化介孔分子筛孔道内,制 备出新型的、易回收、可重复使用的烯烃环氧化多相催化剂。环已烯催化环氧化表 明,该催化剂的催化活性与均相催化剂MoO_2(acac)_2相当,选择性大于80%。  相似文献   

7.
The cubic titanosiloxane [RSiO(3)Ti(OPr(i))](4) (R = 2,6-Pr(2)(i)C(6)H(3)NSiMe(3)) (1) is found to be relatively inert in its attempted reactions with alcohols and other acidic hydrogen containing compounds. The reaction of 1 with silanol (Bu(t)O)(3)SiOH however proceeds over a period of approximately 3 months to result in the hydrolysis of (Bu(t)O)(3)SiOH and yield the transesterification product [RSiO(3)Ti(OBu(t))](4) (2) rather than the expected [RSiO(3)Ti(OSi(OBu(t))(3))](4). Products 1 and 2 have been characterized by elemental analysis, thermal analysis, and spectroscopic techniques (IR, EI-MS, and NMR). The solid-state structures of both 1 and 2 have been determined by single-crystal X-ray diffraction studies. Compounds 1 and 2 are isomorphous and crystallize in a cubic space group with a central cubic Ti(4)Si(4)O(12) core. Solid state thermolysis of 1 was carried at 450, 600, 800, 900, 1000, and 1200 degrees C in air, and the resulting titanosilicate materials 1a-f were characterized by spectroscopic (IR and DR UV), powder XRD, and electron microscopic methods. While, the presence of Ti-O-Si linkages appears to be dominant in the samples prepared at lower temperatures (450-800 degrees C), phase separation of anatase and rutile forms of TiO(2) occurs at temperatures above 900 degrees C as revealed by IR spectral and PXRD studies. The presence of octahedral titanium centers was observed by DR UV spectroscopy for the samples heated at higher temperatures. The use of new titanosilicate materials as catalysts for olefin epoxidation has been investigated. The titanosilicate materials produced at temperatures below 800 degrees C with a large number of Ti-O-Si linkages (or tetrahedral titanium centers) were found to be more active catalysts compared to the materials produced above 900 degrees C. The observed conversion in the epoxidation reactions was found to be somewhat low although the selectivity of the epoxide formation over the other possible oxidized products was found to be very good.  相似文献   

8.
Crystalline materials have been synthesized in reactions of titanium(iv) tetraisobutoxide with branched organic acids (HOOCR', R' = CMe(2)Et, (t)Bu, CH(2)(t)Bu) in the molar ratio 1:1 at room temperature under Ar atmosphere. Particular attention has been paid to the structural and spectral characterization of metastable intermediate complexes of general formula [Ti(7)O(9)(O(i)Bu)(4)(HO(i)Bu)(OOCCMe(2)Et)(6)](2) (1) and [Ti(6)O(5)(O(i)Bu)(6)(OOC(t)Bu)(8)] (3), and their conversion towards more structurally stable compounds [Ti(6)O(6)(O(i)Bu)(6)(OOCC(Me)(2)Et)(6)] (2) and [Ti(6)O(6)(H(2)O)(2)(O(i)Bu)(6)(OOC(t)Bu)(6)] (4). The hexanuclear structure of (5) ([Ti(6)O(6)(O(i)Bu)(6)(OOCCH(2)(t)Bu)(6)]) has been postulated on the basis of IR and (13)C NMR spectroscopic data analysis. The possible reaction pathways which may occur during the formation of the above mentioned compounds are also discussed.  相似文献   

9.
The reaction kinetics of cyclohexene epoxidation using aqueous H2O2 oxidant and the highly selective epoxidation catalyst Bu(cap)TaSBA15 were studied. The reaction was determined to be first-order in Ta(V) surface coverage. The reaction rate exhibited saturation with respect to increasing concentrations of cyclohexene and H2O2. An Eley-Rideal mechanism and rate equation may be used to describe the epoxidation kinetics, which are similar to those for Ti(IV)SiO2-catalyzed epoxidations. The observed kinetics may also be modeled by a double-displacement mechanism typically associated with saturation enzyme catalysts. In addition, (1)H NMR spectroscopy was employed to investigate H2O2 decomposition by Bu(cap)TaSBA15 and the unmodified TaSBA15 catalysts. Little decomposition occurred over the surface-modified material, but the unmodified material catalyzed a 30% conversion of H2O2 after 6 h. UV-visible absorbance and diffuse reflectance UV-visible (DRUV-vis) spectroscopy were used to investigate the structure of the Ta centers on the TaSBA15 catalysts. DRUV-vis spectroscopy was also used to identify a Ta(V)-based epoxidation intermediate, proposed to be a Ta(V)(eta(2)-O2) species, which forms upon reaction of the TaSBA15 and Bu(cap)TaSBA15 materials with H2O2.  相似文献   

10.
The current work is focused on the testing of titanium modified hexagonal mesoporous silica (HMS) for catalysts in epoxidation of cyclohexene. Two samples were prepared via the chemical liquid deposition (CLD) and the chemical vapor deposition (CVD), namely Ti/HMS-L and Ti/HMS-V, respectively. HMS and Ti/HMS were characterized by XRD, N2-adsorption, ICP-AES, UV-Vis. The samples were also evaluated by the epoxidation of cyclohexene with cumene hydroperoxide (CHP) as oxidant. It is revealed that Ti/HMS samples possess typical hexagonal mesoporous structure in which most of titanium species exist in the form of framework tetracoordinated state. Meanwhile, Ti/HMS-V is more seriously affected than Ti/HMS-L since the former was prepared at higher temperature. Ti/HMS-V gives more excellent catalytic performance than Ti/HMS-L, which is likely because the former has more isolated and framework titanium species. Either Ti/HMS-V or Ti/HMS-L can be used only 1 time in epoxidation experiment.  相似文献   

11.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

12.
Site-isolated Ta(V) centers were introduced onto the surface of a mesoporous SBA-15 support via the thermolytic molecular precursor method. After thermal treatment under oxygen, the resulting Si-OH and Ta-OH sites of TaSBA15-O(2)were modified with a series of trimethyl group 14 species, Me(3)E-, by treatment with Me(3)E-NMe(2) (E = Si, Ge, Sn) reagents. The resulting surface-modified catalysts (Me(3)E)(cap)TaSBA15 exhibit a significantly increased rate of cyclohexene epoxidation with H(2)O(2) as an oxidant, and provided a decreased amount of allylic oxidation products with respect to the unmodified material, TaSBA15-O(2). The rate of nonproductive H(2)O(2) decomposition, as monitored via (1)H NMR spectroscopy, significantly decreased after the surface modification. The structure of the TaSBA15 catalysts and potential Ta(V) epoxidation intermediates (formed upon treatment of Ta(V) materials with H(2)O(2)) were probed using UV-visible absorbance and diffuse-reflectance UV-visible spectroscopy. A Ta(V)(η(2)-O(2)) intermediate species is proposed for the TaSBA15-O(2), (Me(3)Si)(cap)TaSBA15, and (Me(3)Ge)(cap)TaSBA15 catalysts, while intermediate species for the (Me(3)Sn)(cap)TaSBA15 catalysts could not be characterized.  相似文献   

13.
Reaction of the organometallic aqua ion [Cp*Ir(H(2)O)(3)](2+) with tert-butyl(trimethylsilyl)amine in acetone yielded a novel trinuclear (μ(3)-oxido)(μ(3)-imido)pentamethylcyclopentadienyliridium(III) complex, [(Cp*Ir)(3)(O)(N(t)Bu)](2+). Single crystal structure analyses show the complex can be isolated both in the double salt ((t)BuNH(3))[(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(3) (1) and in the simple triflate [(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(2) (2). The double salt is stabilized by hydrogen bonding between the tert-butylammonium ion and the three triflate anions. It is the first time that a trinuclear (μ(3)-oxido)(μ(3)-imido) transition metal complex has been structurally characterized.  相似文献   

14.
[Zr(OPr(i))(4)·Pr(i)OH] reacts with [HOSi(O(t)Bu)(3)] in anhydrous benzene in 1:1 and 1:2 molar ratios to afford alkoxy zirconosiloxane precursors of the types [Zr(OPr(i))(3){OSi(O(t)Bu)(3)}] (A) and [Zr(OPr(i))(2){OSi(O(t)Bu)(3)}(2)] (B), respectively. Further reactions of A or B with glycols in 1:1 molar ratio afforded six chemically modified precursors of the types [Zr(OPr(i))(OGO){OSi(O(t)Bu)(3)}] (1A-3A) and [Zr(OGO){OSi(O(t)Bu)(3)}(2)] (1B-3B), respectively [where G = (-CH(2)-)(2) (1A, 1B); (-CH(2)-)(3) (2A, 2B) and (-CH(2)CH(2)CH(CH(3)-)} (3A, 3B)]. The precursors A and B are viscous liquids, which solidify on ageing whereas the other products are all solids, soluble in common organic solvents. These were characterized by elemental analyses, molecular weight measurements, FAB mass, FTIR, (1)H, (13)C and (29)Si-NMR studies. Cryoscopic molecular weight measurements of all the products, as well as the FAB mass studies of 3A and 3B, indicate their monomeric nature. However, FAB mass spectrum of the solidified B suggests that it exists in dimeric form. Single crystal structure analysis of [Zr{OSi(O(t)Bu)(3)}(4)(H(2)O)(2)]·2H(2)O (3b) (R(fac) = 11.9%) as well as that of corresponding better quality crystals of [Ti(O(t)Bu){OSi(O(t)Bu)(3)}(3)] (4) (R(fac) = 5.97%) indicate the presence of a M-O-Si bond. TG analyses of 3A, B, and 3B indicate the formation of zirconia-silica materials of the type ZrO(2)·SiO(2) from 3A and ZrO(2)·2SiO(2) from B or 3B at low decomposition temperatures (≤200 °C). The desired homogenous nano-sized zirconia-silica materials [ZrO(2)·nSiO(2)] have been obtained easily from the precursors A and B as well as from the glycol modified precursors 3A and 3B by hydrolytic sol-gel process in organic media without using any acid or base catalyst, and these were characterized by powder XRD patterns, SEM images, EDX analyses and IR spectroscopy.  相似文献   

15.
The gallium aryloxide polymer, [[((t)Bu)(2)Ga](2)(mu-OC(6)H(4)O)](n)(1) is synthesized by the addition of Ga((t)()Bu)(3) with hydroquinone in a noncoordinating solvent, and reacts with pyridines to yield the yellow compound [((t)()Bu)(2)Ga(L)](2)(mu-OC(6)H(4)O) [L = py (2), 4-Mepy (3), and 3,5-Me(2)py (4)] via cleavage of the Ga(2)O(2) dimeric core. The analogous formation of Ga((t)()Bu)(2)(OPh)(py) (5) occurs by dissolution of [((t)Bu)(2)Ga(mu-OPh)](2) in pyridine. In solution, 2-4 undergo dissociation of one of the pyridine ligands to yield [((t)()Bu)(2)Ga(L)(mu-OC(6)H(4)O)Ga((t)Bu)(2)](2), for which the DeltaH and DeltaS have been determined. Thermolysis of compounds 2-4 in the solid-state results in the loss of the Lewis base and the formation of 1. The reaction of 1 or [((t)Bu)(2)Ga(mu-OPh)](2) with the vapor of the appropriate ligand results in the solid state formation of 2-4 or 5, respectively. The deltaH and deltaS for both ligand dissociation and association for the solid-vapor reactions have been determined. The interconversion of 1 into 2-4, as well as [((t)Bu)(2)Ga(mu-OPh)](2) into 5, and their reverse reactions, have been followed by (13)C CPMAS NMR spectroscopy, TG/DTA, SEM, EDX, and powder XRD. Insight into this solid-state polycondensation polymerization reaction may be gained from the single-crystal X-ray crystallographic packing diagrams of 2-5. The crystal packing for compounds 2, 3, and 5 involve a head-to-head arrangement that is maintained through repeated ligand dissociation and association cycles. In contrast, when compound 4 is crystallized from solution a head-to-tail packing arrangement is formed, but during reintroduction of 3,5-Me(2)py in the solid state-vapor reaction of compound 1, a head-to-head polymorph is postulated to account for the alteration in the deltaH of subsequent ligand dissociation reactions. Thus, the deltaH for the condensation polymerization reaction is dependent on the crystal packing; however, the subsequent reversibility of the reaction is dependent on the polymorph.  相似文献   

16.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

17.
The reaction of AlMe(3) and [((t)Bu)(2)Al(micro-OPh)](2) with pyrazine (pyz), 4,4'-bipyridine (4-4'-bipy), 1,2-bis(4-pyridyl)ethane (bpetha) and 1,2-bis(4-pyridyl)ethylene (bpethe) yields (Me(3)Al)(2)(micro-pyz)(1), (Me(3)Al)(2)(micro-4,4'-bipy)(2), (Me(3)Al)(2)(micro-bpetha)(3), (Me(3)Al)(2)(micro-bipethe)(4), Al((t)Bu)(2)(OPh)(pyz)(5), [((t)Bu)(2)Al(OPh)](2)(micro-4,4-bipy)(6a), [((t)Bu)(2)Al(OPh)](2)(micro-bpetha)(7a), [((t)Bu)(2)Al(OPh)](2)(micro-bipethe)(8a). Compounds 1-4, 6a and 7a have been confirmed by X-ray crystallography. In solution compounds 1-4 undergo a rapid ligand-dissociation equilibrium resulting in a time-average spectrum in the (1)H NMR. In contrast, the solution equilibria for compounds 5-8a are sufficiently slow such that the mono-aluminium compounds may be observed by (1)H NMR spectroscopy: Al((t)Bu)(2)(OPh)(4,4-bipy)(6b), Al((t)Bu)(2)(OPh)(bpetha)(7b) and Al((t)Bu)(2)(OPh)(bpethe)(8b). The inability to isolate [((t)Bu)(2)Al(OPh)](2)(micro-pyz) and the relative stability of each complex is discussed with respect to the steric interactions across the bridging ligand (L) and the electronic effect on one Lewis acid-base interaction by the second Lewis acid-base interaction on the same ligand.  相似文献   

18.
The thermolytic molecular precursor method was used to introduce site-isolated Ti(IV) centers onto the surface of a mesoporous SBA15 support. The resulting surface Si-OH/Ti-OH sites of the Ti-SBA15 catalysts were modified with a series of (N,N-dimethylamino)trialkylsilanes, Me(2)N-SiMe(2)(R) (where R = Me, (n)Bu, or (n)Oc). Compared with the unmodified catalysts, the surface-modified catalysts are more active in the oxidation of cyclohexene with H(2)O(2) and exhibit a significantly higher selectivity (up to 58%) for cyclohexene oxide formation (vs allylic oxidation products). In situ Fourier transform infrared (FTIR) and diffuse reflectance UV visible (DRUV-vis) spectroscopies were used to probe this phenomenon, and it was determined that active sites with capped titanol centers, (SiO(surface))(3)Ti(OSiR(3)), likely undergo Ti-OOH formation upon addition of H(2)O(2) in a manner analogous to that for active sites of the type (SiO(surface))(3)TiOH. On the basis of the observation of similar Ti-OOH intermediates for both species, the electron-withdrawing effects on the Ti(IV) active site, resulting from the surface modification, are likely responsible for the observed increase in selectivity.  相似文献   

19.
Various sized siloxides (Cy(3)SiO > (t)Bu(3)SiO > (t)Bu(2)PhSiO > (t)Bu(2)MeSiO approximately (i)Pr(2)(t)BuSiO > (i)Pr(3)SiO > (t)Bu(2)HSiO) were used to make (R(2)R'SiO)(3)TaCl(2) (R = (t)Bu, R' = H (1-H), Me (1-Me), Ph (1-Ph), (t)Bu (1); R = (i)Pr, R' = (t)Bu (1-(i)Pr(2)); R = R' = (i)Pr (1-(i)Pr(3)); R = R' = (c)Hex (Cy)). Product analyses of sodium amalgam reductions of several dichlorides suggest that [(R(2)R'SiO)(3)Ta](2)(mu-Cl)(2) may be a common intermediate. When the siloxide is large (1-(t)Bu), formation of the Ta(III) species ((t)Bu(3)SiO)(3)Ta (6) occurs via disproportionation. When the siloxide is small, the Ta(IV) intermediate is stable (e.g., [((i)Pr(3)SiO)(3)Ta](2)(mu-Cl)(2) (2)), and when intermediate sized siloxides are used, solvent bond activation via unstable Ta(III) tris-siloxides is proposed to occur. Under hydrogen, reductions of 1-Me and 1-Ph provide Ta(IV) and Ta(V) hydrides [((t)Bu(2)MeSiO)(3)Ta](2)(micro-H)(2) (4-Me) and ((t)Bu(2)PhSiO)(3)TaH(2) (7-Ph), respectively.  相似文献   

20.
Alpha-hydrogen abstraction and alpha-hydrogen migration reactions yield novel titanium(IV) complexes bearing terminal phosphinidene ligands. Via an alpha-H migration reaction, the phosphinidene ((tBu)nacnac)Ti=P[Trip](CH(2)(tBu) ((tBu)nacnac(-) = [Ar]NC((t)Bu)CHC((t)Bu)N[Ar], Ar = 2,6-(CHMe2)(2C6H3, Trip = 2,4,6-(i)Pr3C6H2) was prepared by the addition of the primary phosphide LiPH[Trip] to the nucleophilic alkylidene triflato complex ((tBu)nacnac)Ti=CH(t)Bu(OTf), while alpha-H abstraction was promoted by the addition of LiPH[Trip] to the dimethyl triflato precursor ((tBu)nacnac)Ti(CH)(2)(OTf) to afford ((tBu)nacnac)Ti=P[Trip](CH3). Treatment of ((tBu)nacnac)Ti=P[Trip](CH3) with B(C6F5)(3) induces methide abstraction concurrent with formation of the first titanium(IV) phosphinidene zwitterion complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)}. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)} [2 + 2] cycloadds readily PhCCPh to afford the phosphametallacyclobutene [((tBu)nacnac)Ti(P[Trip]PhCCPh)][CH3B(C6F5)(3)]. These titanium(IV) phosphinidene complexes possess the shortest Ti=P bonds reported, have linear phosphinidene groups, and reveal significantly upfielded solution 31P NMR spectroscopic resonances for the phosphinidene phosphorus. Solid state 31P NMR spectroscopic data also corroborate with all three complexes possessing considerably shielded chemical shifts for the linear and terminal phosphinidene functionality. In addition, high-level DFT studies on the phosphinidenes suggest the terminal phosphinidene linkage to be stabilized via a pseudo Ti[triple bond]P bond. Linearity about the Ti-P-C(ipso) linkage is highly dependent on the sterically encumbering substituents protecting the phosphinidene. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5))(3)} can catalyze the hydrophosphination of PhCCPh with H(2)PPh to produce the secondary vinylphosphine HP[Ph]PhC=CHPh. In addition, we demonstrate that this zwitterion is a powerful phospha-Staudinger reagent and can therefore act as a carboamination precatalyst of diphenylacetylene with aldimines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号