首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anti-lysozyme aptamers are found to preferentially bind to the edge of a tightly packed lysozyme pattern. Such edge-binding is due to the better accessibility and flexibility of the edge lysozyme molecules. Kelvin probe force microscopy (KPFM) was used to study the aptamer–lysozyme binding. Our results show that KPFM is capable of detecting the aptamer–protein binding down to the 30 nm scale. The surface potential of the aptamer–lysozyme complex is approximately 12 mV lower than that of the lysozyme. The surface potential images of the aptamer-bound lysozyme patterns have the characteristic shoulder steps around the pattern edge, which is much wider than that of a clean lysozyme pattern. These results demonstrate the potentials of KPFM as a label-free method for the detection of protein–DNA interactions. Figure Aptamers preferentially bind on the edge of a protein pattern as revealed by Kelvin force microscopy.
Yuguang CaiEmail:
  相似文献   

2.
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of uniaxial deformation in partially and fully molten states on the morphology of crosslinked low-density polyethylene has been investigated. At low temperatures, the morphology is predominantly fibrillar, with little kebabs appearing on the fibril surfaces. As the deformation temperature is increased into the melting range, the shish density decreases, and overgrowths of kebabs on the fibrils concurrently increase in length. This gives rise to added twisting of the kebabs reflected in the orientation factor analysis. This shish/twisted lamellar kebab texture is observed only in a partially molten state. Studies in a substantially molten state indicate the absence of shish, althugh short lamellae are observed that are oriented in the transverse direction. This morphology indicates a high chain orientation factor as a result of short lamellae that exhibit small twisting similar to Matsumura's rod model. The absence of shishes in the final films stretched isothermally in a substantially molten stage agrees with Schultz's model, in which imperfectly formed shishes dissolve if they are not stabilized by rapid cooling, as is the case in these studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2228–2237, 2004  相似文献   

4.
Bruch’s membrane is a layer composed of collagen fibers located just beneath the retina. This study validates a strategy used to map the morphological and adhesion characteristics of collagen fibers in Bruch’s membrane. Atomic force microscopy tips were functionalized with different chemical groups and used to map the hydrophilic and hydrophobic regions on the surface of the eye tissue. The largest adhesion forces were observed when tips functionalized with NH2 groups were used. The trend in the adhesion forces was rationalized based on the distribution of different functional groups in the triple-helical structure of the collagen fibers. The results of this study can be used to design more effective strategies to treat eye diseases such as age-related macular degeneration.  相似文献   

5.
Summary: Comb‐like macromolecules were adsorbed on mica and imaged by scanning force microscopy in real time as they underwent a transition from an extended worm‐like conformation to globuli and vice versa. The conformational transition was effected by coadsorption of ethanol and water molecules. Coadsorption of the small molecules allowed manipulation of the adherence and spreading of the macromolecules, thus effecting the reptation like stretching and collapse of the single molecules.

SFM images of three individual PMA‐g‐PnBuA brush molecules on mica 27 min (left, first collapse cycle) and 18 min (right, second collapse cycle) after injection of ethanol into the sample space.  相似文献   


6.
基于原子力显微镜的高分子单分子力学研究   总被引:1,自引:0,他引:1  
原子力显微镜(AFM)从根本上改变了人们对单个原子和分子的作用和认识方式。单分子力谱是基于原子力显微镜力的测量方法。概速了近年来利用基于原子力显微镜的单分子力谱研究单个高分子分子内及分子闻作用力的进展。  相似文献   

7.
The thickness and surface morphology of electrostatically self-assembled films of chitosan and xanthan (persistence length of ∼120nm) have been studied using dual-wavelength Reflection Interference Contrast Microscopy (DW-RICM) and tapping mode Atomic Force Microscopy (AFM). The multilayers were prepared at two ionic strengths (5mM and 150mM). When the multilayers were assembled at 150 mM a network like morphology was observed after one bilayer. This structure was found to be of large influence in the further growth of the multilayers, with the same kind of network structure being observed at all number of bilayers. A lack of swelling behaviour, as well as the network structure and the poresize of the network, is suggested to originate from the high chain stiffness of xanthan.  相似文献   

8.
应用原子力显微镜(atomic force microscopy,AFM)探测了静息、脂多糖(LPS)或伴刀豆蛋白(ConA)活化的人外周血淋巴细胞的形态结构、超微结构及粘滞力特性。从AFM图像可知,经LPS或ConA刺激活化后的淋巴细胞比静息状态的淋巴细胞有所增大,并且表面分布着大小不一的颗粒状聚合物。利用AFM高空间分辨的力位移曲线测量系统,发现经LPS或ConA刺激活化后淋巴细胞的粘滞力是静息状态淋巴细胞的2~3倍。通过AFM探测淋巴细胞活化状态的可视化数据,可以更好地理解淋巴细胞的行为。  相似文献   

9.
原子力显微镜在多糖结构研究中的进展   总被引:10,自引:0,他引:10  
简述了原子力显微镜(AFM)的工作原理和特点,以及在多糖,特别是在淀粉结构研究中的进展。  相似文献   

10.
Detailed mapping of surface chemistry with nanometer resolution has application throughout the physical and life sciences. The atomic force microscope (AFM) has provided a tool that, when using functionalised probes, is capable of providing chemical information with this level of spatial resolution. Here, we describe the technique of chemical force microscopy (CFM) and demonstrate the sensitivity of the technique using chemical force titrations against pH. We describe in detail the specific application of mapping the surface charge on natural hydroxyapatite from skeletal tissue and show that this new information leads to a better understanding of the binding of matrix proteins to the mineral surface.  相似文献   

11.
Carbon black dispersions are stabilized using polymeric dispersants. The stabilization is provided by adsorbed polymer layers around surfaces through interaction forces. Therefore, it is valuable to measure the interaction forces between bare and polymer-coated surfaces using atomic force microscopy to predict the behavior of dispersions. Three polymeric dispersants (Hypermer LP1, Hypermer B246, and OLOA 11000) are used in the present work to disperse the graphitic carbon black particles in an organic solvent, decaline. Hypermer B246 and OLOA 11000 produced repulsive interactions and, hence, are effective stabilizers for carbon black surfaces. Hypermer LP1 produced attractive interactions, making it an ineffective stabilizer for carbon black. Attractive interactions were also observed in blank dispersions. The experimentally determined interaction curves are compared with theoretical curves, the Derjaguin approximation. The repulsive steric interactions are also analyzed quantitatively based on the Alexander and de Gennes scaling law.  相似文献   

12.
The thermal and crystal morphological properties of poly[ethylene teraphthalate] (PET) and poly(ethylene-2,6-naphthalenedicarboxylate) (PEN) biaxially oriented films were compared to amorphous and other isotropic semi-crystalline samples. Crystal melting as a function of temperature was characterized by temperature modulated DSC (TMDSC) and found to begin just above the glass transition for both oriented films. About 75°C above the glass transitions, substantial exothermic recrystallization begins and continues through the final melting region in oriented films. The maximum in the non-reversing TMDSC signal for the oriented films signifies the maximum recrystallization exothermic activity with peaks at 248°C and 258°C for PET and PEN, respectively. The final melting endotherm detected was 260°C and 270°C for PET and PEN, and is shown by the TMDSC data and by independent rapid heating rate melting point determinations to be due to the melting of species recrystallized during the heating scan. The results are compared with TMDSC data for initially amorphous and melt crystallized samples. The volume fraction of rigid species (Frigid=total crystal fraction plus rigid amorphous or non-crystalline species) were measured by TMDSC glass transition data, and contrasted with the area fraction of rigid species at the oriented film surface characterized with very high resolution atomic force microscopy (AFM) phase data. The data suggest that the 11 nm wide hard domains in PET, and 21 nm wide domains in PEN film detected by AFM consist of both crystal and high stiffness interphase species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Surface properties have a significant influence on the performance of biomedical devices. The influence of surface chemistry on the amount and distribution of adsorbed proteins has been evaluated by a combination of atomic force microscopy (AFM) and surface plasmon resonance (SPR). Adsorption of albumin, fibrinogen, and fibronectin was analyzed under static and dynamic conditions, employing self-assembled monolayers (SAMs) as model surfaces. AFM was performed in tapping mode with antibody-modified tips. Phase-contrast images showed protein distribution on SAMs and phase-shift entity provided information on protein conformation. SPR analysis revealed substrate-specific dynamics in each system investigated. When multi-protein solutions and diluted human plasma interacted with SAMs, SPR data suggested that surface chemistry governs the equilibrium composition of the protein layer.  相似文献   

14.
Summary: Progress in the development of a redox‐driven macromolecular motor and the characterization of its redox‐mechanical cycle using electrochemical AFM‐based single‐molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) macromolecules were reversibly controlled in situ by adjusting the potential in electrochemical SMFS experiments. For the operating cycle of one individual PFS‐based molecular motor, an output of 3.4 × 10−19 J and an efficiency of 5% have been estimated.

Force‐extension curves of a single‐molecule motor.  相似文献   


15.
Atomic force microscopy (AFM) has been applied to investigate the morphological and topographical surface modifications induced by radiofrequency cold plasma processing of poly(ethyleneterephthalate) textiles. Surface effects are analysed in low‐pressure air plasma for different plasma exposure times. The results show a progressive degradation of the surface with increasing roughness. The analysis suggests that modification of the surface during textile treatment may be ascribed to a plasma‐induced physical process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Several high-resolution imaging techniques such as FESEM, TEM and AFM are compared with respect to their application on alginate hydrogels, a widely used polysaccharide biomaterial. A new AFM method applicable to RGD peptides covalently conjugated to alginate hydrogels is described. High-resolution images of RGD adhesion ligand distribution were obtained by labeling biotinylated RGD peptides with streptavidin-labeled gold nanoparticles. This method may broadly provide a useful tool for sECM characterization and design for tissue regeneration strategies.  相似文献   

17.
Two new semiconducting polymers poly{4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran} ( P1 ) and poly {4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran‐alt‐4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]dithiophene} ( P2 ) have been synthesized. These polymers were tested in bulk heterojunction solar cells yielding power conversion efficiencies of 1.19% for P1 and 0.79% for P2 . The surface morphology of the solar cell devices indicated that both the polymers display a granular morphology with smoother films displaying higher power conversion efficiencies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
原子力显微镜(AFM)通过探测针尖与样品之间的相互作用力获得样品表面的结构信息。基于qPlus传感器的非接触原子力显微镜(NC-AFM)在传统AFM的基础上进一步提升了空间分辨率,为研究表面物理和化学过程提供了一种新的成像和谱学研究技术。本文首先介绍NC-AFM的基本构造、高分辨成像机制和力谱测量等工作原理,总结了近年来NC-AFM在表面在位化学反应、低维材料表征和表面电荷分布测量等方面的应用,探讨了NC-AFM技术的发展与完善,展望了NC-AFM面临的机遇和挑战。  相似文献   

19.
The α- and β-form lamellae of isotactic polypropylene were developed at different temperatures. The melting behaviors of the lamellae were observed in real time at elevated temperatures using a hot-stage atomic force microscopy. The melting behavior of the α-form lamellae was determined by the lamellar defects. For the α-form lamellae developed at different undercoolings, the larger the undercoolings, the relatively higher amount of defect in the lamellae was observed. The lamellae with defects were melted into lamellar segments, and recrystallization took place during the heating process. The β-form lamellae had lower thermal stability, and they melted firstly and separately from that of α-form.  相似文献   

20.
The surface structure and dewetting process of thin films of complex perfluorinated ion‐containing polymers have been studied with atomic force microscopy. These polymers, or ionomers, consist of hydrophilic, hydrophobic, and ionic groups, which are noncompatible with one another, and this results in the association of the polymers into supramolecular structures. These types of polymers have a broad range of technological uses, ranging from thin selective coatings to fuel cells in the form of polymer electrolyte membranes. As the technology calls for thinner films, the interfacial structure and dynamics (wetting/dewetting) of the films become critical in controlling the overall behavior of the polymers. The ionomer under consideration forms structured films consisting of bundles of micelles. These ultrathin films do not dewet above the glass‐transition temperatures of the polymers, contrary to what has been observed in thin diblock copolymers. Perturbing the system with a high‐ionic‐strength solution, however, results in a breakup of the primary aggregate and enhances the adhesion of the films and their stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 149–158, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号