首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

3.
4.
The one‐pot sequential coupling of benzylamines, boronic esters, and aryl iodides has been investigated. In the presence of an N‐activator, the boronate complex formed from an ortho‐lithiated benzylamine and a boronic ester undergoes stereospecific 1,2‐metalate rearrangement/anti‐SN2′ elimination to form a dearomatized tertiary boronic ester. Treatment with an aryl iodide under palladium catalysis leads to rearomatizing γ‐selective allylic Suzuki–Miyaura cross‐coupling to generate 1,1‐diarylalkanes. When enantioenriched α‐substituted benzylamines are employed, the corresponding 1,1‐diarylalkanes are formed with high stereospecificity.  相似文献   

5.
The use of light to control the course of a chemical/biochemical reaction is an attractive idea because of its ease of administration with high precision and fine spatial resolution. Staudinger ligation is one of the commonly adopted conjugation processes that involve a spontaneous reaction between azides and arylphosphines to form iminophosphoranes, which further hydrolyze to give stable amides. We designed an anthracenylmethyl diphenylphosphinothioester ( 1 ) that showed promising Staudinger ligation reactivity upon photo‐excitation. Broadband photolysis at 360–400 nm in aqueous organic solvents induced heterolytic cleavage of its anthracenylmethyl–phosphorus bond, releasing a diphenylphosphinothioester ( 2 ) as an efficient traceless Staudinger–Bertozzi ligation reagent. The quantum yield of such a photo‐induced heterolytic bond‐cleavage at the optimal wavelength of photolysis (376 nm) at room temperature is ≥0.07. This work demonstrated the feasibility of photocaging arylphosphines to realize the photo‐triggering of the Staudinger ligation reaction.  相似文献   

6.
A new MnIII‐Schiff base complex, [MnL(OH2)](ClO4) ( 1 ) (H2L = N, N′‐bis‐(3‐Br‐5‐Cl‐salicylidene)‐1, 2‐diimino‐2‐methylethane), an inorganic model of the catalytic center (OEC, Oxygen Evolving Complex) in photosystem II (PSII), has been synthesized and characterized by elemental analysis, IR and EPR spectroscopy, mass spectrometry, magnetic susceptibility measurement and the study of its redox properties by cyclic and normal pulse voltammetry. This complex mimics reactivity (showing a relevant photolytic activity), and also some structural characteristics (parallel‐mode MnIII EPR signal from partially assembled OEC cluster) of the natural OEC. The complex 1 was found to rearrange in solution into a crystallographically solved square‐pyramidal complex, [MnLL′] ( 2 ) (HL′ = 6‐bromo‐4‐chloro‐2‐cyanophenol), through a process, which probably liberates radical species (detected by EPR), and provokes a C—N bond cleavage in the ligand. A photo‐radical mechanism is discussed to explain this rearrangement.  相似文献   

7.
1,1‐Disilyl alcohols like 6 give the silyl ethers like 9 on treatment with base and alkyl halides, in a reaction which may be formulated as the alkylation of the Brook‐rearranged carbanion 8 . The products can be oxidised to give ketones like 10 , showing that this Brook‐rearranging system supplies a controlled d1 synthon of the acyl anion class. The alcohols can be prepared from the acid chloride 12 and dimethyl(phenyl)silyllithium, but the intermediate anion 21 need not be worked up; it can be used directly in the alkylation step.  相似文献   

8.
A novel rearrangement of 2‐(1‐hydroxyalkyl)‐1‐alkylcyclopropanol has been found. It proceeds in the presence of a catalytic amount of organozinc ate complex to give vic‐diols. The rearrangement can be applied to various types of 2‐(1‐hydroxyalkyl)‐1‐alkylcyclopropanol, which can be easily prepared from the corresponding α,β‐epoxyketones and bis(iodozincio)methane. When bicyclo[13.1.0]pentadecane‐1,15‐diol was treated with the organozinc ate complex, the corresponding 14‐membered cyclic vic‐diol was obtained. Thus, this rearrangement is also useful for changing the ring size of cyclic substrates.  相似文献   

9.
The photoisomerization of 1,2‐dihydro‐1,2‐azaborine was investigated by high‐level multireference ab initio and density functional theory calculations. The intermediates (IMs) and transition states (TSs) on the S0 and S1 states were optimized using the state‐averaged complete active space self‐consistent field method. The multireference configuration interaction method with the Davidson correction was used to obtain accurate energetics. Moreover, the conical intersections (CIs), which play a crucial role in photoisomerization, were also optimized. On the basis of the calculation results, the most favorable proposed reaction pathway is as follows: reactant→Franck‐Condon region→TS1→CI→IM0→TS0P→product. The product was not directly formed through the CI, and the IM0 existed on the S0 state. These results show that the isomerization of 1,2‐dihydro‐1,2‐azaborine involves both photoreactions and thermal reactions. The calculated results clarify recent experimental observations.  相似文献   

10.
Systematic studies on the photo‐Fries rearrangement of different 9H‐carbazol‐2‐yl sulfonates 2 have shown that this type of conversion can be readily used for the preparative‐scale introduction of alkyl‐ or arylsulfonyl groups into polycyclic aromatic compounds under very mild conditions. A series of new 1‐sulfonyl‐ ( 3 ) or 3‐sulfonyl‐9H‐carbazoles ( 4 ) were prepared in medium‐to‐good yields, and characterized by UV/VIS, 1H‐NMR, and 13C‐NMR spectroscopy, as well as by elemental analysis. Effects of irradiation wavelength, solvent polarity, presence or absence of O2, and photosensitizers were studied in detail.  相似文献   

11.
12.
13.
Phosphorus meets carbohydrates : Dimethyl phosphite reacts with ceric(IV) ammonium nitrate (CAN) to give phosphonyl radicals that add to glycals 1 . The derivatives 2 were isolated in high yields and during a subsequent Horner–Emmons reaction underwent an interesting elimination to give 3,6‐dihydro‐2H‐pyrans 3 . The short sequence with simple precursors is applicable to the transformation of hexoses, pentoses, and disaccharides. Bn=benzyl.

  相似文献   


14.
(E) and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile (BTE; (=E) and (Z)‐1,2‐bis(trifluoromethyl)but‐2‐enedinitrile) were reacted with an excess of methyl vinyl ether, used as solvent, and furnished 1 : 2 adducts 6 (54%) and cyclobutanes 3 as 1 : 1 adducts (41%). The four diastereoisomeric bis‐adducts 6 (different ratios from (E) and (Z)‐BTE) are derivatives of 1‐azabicyclo[4.2.0]oct‐5‐ene; X‐ray analyses and 19F‐NMR spectra revealed their structures. Since the cyclobutanes 3 are resistant to vinyl ether, the pathways leading to mono‐ and bis‐adducts must compete on the level of the intermediate l,4‐zwitterions 1 and 2 . The latter either cyclize to the cyclobutanes 3 or to six‐membered cyclic ketene imines 8 which accept a second molecule of vinyl ether to yield the bis‐adducts 6 . The occurrence of the highly strained ketene imines 8 gains credibility by comparison to stable seven‐membered cyclic ketene imines recently reported.  相似文献   

15.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo‐ and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2‐WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record‐breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol?1 to 11 kJ mol?1. Furthermore, the reaction order of O2 is ?1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in‐situ‐captured reaction intermediates.  相似文献   

16.
The reaction of 4,6‐dinitrobenzofuroxan (DNBF) with 1‐trimethylsilyloxybuta‐1,3‐diene ( 8 ) is shown to afford a mixture of [2+4] diastereomeric cycloadducts ( 10 , 11 ) through stepwise addition–cyclization pathways. Zwitterionic intermediate σ‐adduct 9 , which is involved in the processes, has been successfully characterized by 1H and 13C NMR spectroscopy and UV/visible spectrophotometry in acetonitrile. A kinetic study has been carried out in this solvent that revealed that the rate of formation of 9 nicely fits the three‐parameter equation log k=s(E+N) developed by Mayr to describe the feasibility of nucleophile–electrophile combinations. This significantly adds to the NMR spectroscopic evidence that the overall cycloadditions take place through a stepwise mechanism. The reaction has also been studied in dichloromethane and toluene. In these less polar solvents, the stability of 9 is not sufficient to allow direct characterization by spectroscopic methods, but a kinetic investigation supports the view that stepwise processes are still operating. An informative comparison of our reaction with previous interactions firmly identified as prototype stepwise cycloadditions is made on the basis of the global electrophilicity index, ω, defined by Parr within the density functional theory, and highlighted by Domingo et al. as a powerful tool for understanding Diels–Alder reactions.  相似文献   

17.
An unprecedented photo‐promoted skeletal rearrangement reaction of phosphine–borane frustrated Lewis pairs, o‐(borylaryl)phosphines, involving cleavage of an unstrained sp2C–sp3C σ‐bond is reported. The reaction realizes an efficient synthesis of cyclic phosphonium borate compounds. The reaction mechanism via a boranorcaradiene intermediate is proposed based on theoretical calculations. This work sheds light on the new photoreactivity of phosphine–borane FLPs.  相似文献   

18.
19.
Diels–Alder cycloaddition is one of the most powerful tools for the functionalization of single‐walled carbon nanotubes (SWCNTs). Density functional theory at the B3‐LYP level of theory has been used to investigate the reactivity of different‐diameter SWCNTs (4–9,5) in Diels–Alder reactions with 1,3‐butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs.  相似文献   

20.
Gold‐catalyzed oxidations of alkynes by N‐oxides offer direct access to reactive α‐oxo gold carbene intermediates from benign and readily available alkynes instead of hazardous diazo carbonyl compounds. Despite various versatile synthetic methods developed based on this strategy, one of the hallmarks of α‐oxo carbene/carbenoid chemistry, that is, the Wolff rearrangement, has not been realized in this context. This study discloses the first examples that show the Wolff rearrangement can be readily realized by α‐oxo gold carbenes oxidatively generated from TBS‐terminated alkynes (TBS=tert‐butyldimethylsilyl). The thus‐generated silylketenes can be either isolated pure or subsequently trapped by various internal or external nucleophiles in one pot to afford α‐silylated carboxylic acids, their derivatives, or TBS‐substituted allenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号