首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xeroderma pigmentosum (XP) is a rare, recessively transmitted genetic disease characterized by increasingly marked dyspigmentation and xerosis (dryness) of sun‐exposed tissues, especially skin. Skin cancers characteristically develop in sun‐exposed sites at very much earlier ages than in the general population; these are often multiple and hundreds or even thousands may develop. Eight complementation groups have been identified. Seven groups, XP‐A…G, are associated with defective genes encoding proteins involved in the nucleotide excision DNA repair (NER) pathway that recognizes and excises mutagenic changes induced in DNA by sunlight; the eighth group, XP‐V, is associated with defective translesion synthesis (TLS) bypassing such alterations. The dyspigmentation, xerosis and eventually carcinogenesis in XP patients appear to be due to their cells’ failure to respond properly to these mutagenic DNA alterations, leading to mutations in skin cells. A subset of cases, especially those in some complementation groups, may develop neurological degeneration, which may be severe. However, in most XP patients, in the past the multiple skin cancers have led to death at an early age due to either metastases or sepsis. Using either topical 5‐fluorouracil or imiquimod, we have developed a protocol that effectively prevents most skin cancer development in XP patients.  相似文献   

2.
3.
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV‐induced DNA repair. When left unrepaired, UVB‐induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.  相似文献   

4.
Xeroderma pigmentosum (XP) is a rare autosomal recessive hereditary disease caused by deficiency in repair of DNA lesions generated by ultraviolet radiation and other compounds. Patients with XP display pigmentary change and numerous skin cancers in sun‐exposed sites, and some patients show exaggerated severe sunburns even upon minimum sun exposure as well as neurological symptoms. We conducted a nationwide survey for XP since 1980. In Japan, the frequency of the XP complementation group A is the highest, followed by the variant type; while in the Western countries, those of groups C or D are the highest. Regarding skin cancers in XP, basal cell carcinoma was the most frequent cancer that afflicted patients with XP, followed by squamous cell carcinoma, and malignant melanoma. The frequency of these skin cancers in patients with XP has decreased in these 20 years, and the age of onset of developing skin cancers is higher than those previously observed, owing to early diagnosis and education to patients and care takers on strict prevention from sunlight for patients with XP. On the other hand, the effective therapy for neurological XP has not been established yet, and this needs to be done urgently.  相似文献   

5.
MOLECULAR MECHANISMS OF ULTRAVIOLET RADIATION CARCINOGENESIS   总被引:17,自引:0,他引:17  
UV radiation is a potent DNA damaging agent and a known inducer of skin cancer in experimental animals. There is excellent scientific evidence to indicate that most non-melanoma human skin cancers are induced by repeated exposure to sunlight. UV radiation is unique in that it induces DNA damage that differs from the lesions induced by any other carcinogen. The prevalence of skin cancer on sun-exposed body sites in individuals with the inherited disorder XP suggests that defective repair of UV-induced DNA damage can lead to cancer induction. Carcinogenesis in the skin, as elsewhere, is a multistep process in which a series of genetic and epigenetic events leads to the emergence of a clone of cells that have escaped normal growth control mechanisms. The principal candidates that are involved in these events are oncogenes and tumor suppressor genes. Oncogenes display a positive effect on transformation, whereas tumor suppressor genes have an essentially negative effect, blocking transformation. Activated ras oncogenes have been identified in human skin cancers. In most cases, the mutations in the ras oncogenes have been localized to pyrimidine-rich sequences, which indicates that these sites are probably the targets for UV-induced DNA damage and subsequent mutation and transformation. The finding that activation of ras oncogenes in benign and self-regressing keratoacanthomas in both humans and in animals indicates that they play a role in the early stages of carcinogenesis (Corominas et al., 1989; Kumar et al., 1990). Since cancers do not arise immediately after exposure to physical or chemical carcinogens, ras oncogenes must remain latent for long periods of time. Tumor growth and progression into the more malignant stages may require additional events involving activation of other oncogenes or deletion of growth suppressor genes. In addition, amplification of proto-oncogenes or other genes may also be involved in tumor induction or progression. In contrast to the few studies that implicate the involvement of oncogenes in UV carcinogenesis, the role of tumor suppressor genes in UV carcinogenesis is unknown. Since cancer-prone individuals, particularly XP patients, lack one or more repair pathways, one can speculate that DNA repair enzymes would confer susceptibility to both spontaneous and environmentally induced cancers. Another potential candidate that can function as a tumor suppressor gene is the normal c-Ha-ras gene. Spandidos and Wilkie (1988) have shown that the normal c-Ha-ras gene can suppress transformation induced by the mutated ras gene.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
DNA repair mechanisms constitute major defences against agents that cause cancer, degenerative disease and aging. Different repair systems cooperate to maintain the integrity of genetic information. Investigations of DNA repair involvement in human pathology require an efficient tool that takes into account the variety and complexity of repair systems. We have developed a highly sensitive damaged plasmid microarray to quantify cell lysate excision/synthesis (ES) capacities using small amounts of proteins. This microsystem is based on efficient immobilization and conservation on hydrogel coated glass slides of plasmid DNA damaged with a panel of genotoxic agents. Fluorescent signals are generated from incorporation of labelled dNTPs by DNA excision-repair synthesis mechanisms at plasmid sites. Highly precise DNA repair phenotypes i.e. simultaneous quantitative measures of ES capacities toward seven lesions repaired by distinct repair pathways, are obtained. Applied to the characterization of xeroderma pigmentosum (XP) cells at basal level and in response to a low dose of UVB irradiation, the assay showed the multifunctional role of different XP proteins in cell protection against all types of damage. On the other hand, measurement of the ES of peripheral blood mononuclear cells from six donors revealed significant diversity between individuals. Our results illustrate the power of such a parallelized approach with high potential for several applications including the discovery of new cancer biomarkers and the screening of chemical agents modulating DNA repair systems.  相似文献   

7.
8.
In recent years major progress has been made in identifying the molecular mechanisms by which UV radiation modulates the immune system of the skin. From these studies it appears that the generation of DNA damage and the subsequent activation of DNA repair enzymes play a critical role in the generation of UV-B-induced immunosuppression. These studies have made use of cells from both nucleotide excision repair (NER)-deficient individuals and mice. Results obtained from these studies have important clinical implications for DNA-repair-deficient patients in particular and for effective photoprotection of human skin in general.  相似文献   

9.
Xeroderma pigmentosum (XP) is a rare, recessive, photosensitive and cancer-prone syndrome, the biochemical hallmark of which is a defect in nucleotide excision repair of ultraviolet (UV)-induced mutagenic lesions. After isolation and amplification of several strains of XP-C keratinocytes and fibroblasts, a three-dimensional skin model in vitro comprising both epidermis and a dermal equivalent could be obtained. XP dermal tissues and XP epidermis displayed specific morphological and biochemical characteristics compared with tissues obtained with normal cells. One of the major features was the formation of epidermal invaginations into the dermal equivalent. After UV-B exposure, and contrary to repair of DNA lesions in normal cells, the XP model displayed repair deficiency with long-lasting persistence of UV-induced DNA damage and p53 positive nuclei. Recent data obtained after genetic correction leading to functional XPC gene in keratinocytes and fibroblasts revealed that several abnormal features could be normalized. In conclusion, reconstruction of XP skin in vitro provides a very promising system to study genetic hyperphotosensitivity and opens a rational perspective to XP tissue therapy.  相似文献   

10.
A new approach to photoprotection is to repair DNA damage after UV exposure. This can be accomplished by delivery of a DNA repair enzyme with specificity to UV-induced cyclobutane pyrimidine dimers into skin by means of specially engineered liposomes. Treatment of DNA-repair-deficient xeroderma pigmentosum patients or skin cancer patients with T4N5 liposome lotion containing such DNA repair liposomes increases the removal of DNA damage in the first few hours after treatment. In these studies, a DNA repair effect was observed in some patients treated with heat-inactivated enzyme. Unexpectedly, it was discovered that the heat-inactivated T4 endonuclease V enzyme refolds and recovers enzymatic activity. These studies demonstrate that measurements of molecular changes induced by biological drugs are useful adjuvants to clinical studies.  相似文献   

11.
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.  相似文献   

12.
The seminal discovery by James Cleaver of defective DNA repair in xeroderma pigmentosum (XP) opened up an ever‐expanding field of DNA repair‐related disorders. In addition, it put XP on the map and has led to improved diagnosis, care and management of affected patients. In the United Kingdom, we recently established a multidisciplinary specialist clinic for XP patients. All XP patients in the United Kingdom are able to visit the clinic where they are examined and advised by a team of specialists with detailed knowledge of the different aspects of XP.  相似文献   

13.
Xeroderma pigmentosum (XP) is a genetic disorder associated with defects in nucleotide excision repair, which eliminates a wide variety of helix‐distorting types of DNA damage including sunlight‐induced pyrimidine dimers. In addition to skin disease, approximately 30% of XP patients develop progressive neurological disease, which has been hypothesized to be associated with the accumulation of a particular type of oxidatively generated DNA damage called purine 8,5′‐cyclo‐2′‐deoxynucleosides (purine cyclonucleosides). However, there are no currently available methods to detect purine cyclonucleosides in DNA without the need for DNA hydrolysis. In this study, we generated a novel monoclonal antibody (CdA‐1) specific for purine cyclonucleosides in single‐stranded DNA that recognizes 8,5′‐cyclo‐2′‐deoxyadenosine (cyclo‐dA). An immunoassay using CdA‐1 revealed a linear dose response between known amounts of cyclo‐dA in oligonucleotides and the antibody binding to them. The quantitative immunoassay revealed that treatment with Fenton‐type reagents (CuCl2/H2O2/ascorbate) efficiently produces cyclo‐dA in DNA in a dose‐dependent manner. Moreover, immunofluorescent analysis using CdA‐1 enabled the visualization of cyclo‐dA in human osteosarcoma cells, which had been transfected with oligonucleotides containing cyclo‐dA. Thus, the CdA‐1 antibody is a valuable tool for the detection and quantification of cyclo‐dA in DNA, and may be useful for characterizing the mechanism(s) underlying the development of XP neurological disease.  相似文献   

14.
Photoprotection is essential to prevent the long‐term deleterious effects of ultraviolet (UV ), including skin cancer and photoaging. So far, there has been an increase in the use of natural bioactive phytochemicals for the development of more effective skin photoprotective agents. However, the molecular mechanisms underlying the photochemoprotection activity of such compounds remain largely unknown. The objective of this study was to investigate the effects of a Sechium edule fruit extract (SEE ) in terms of photoprotection against UVA in primary human keratinocytes. We found that SEE protected keratinocytes against UVA ‐induced cytotoxicity, decreased the intracellular amounts of reactive oxygen species, and reduced oxidatively induced DNA lesions after UVA exposure. Furthermore, SEE decreased the induction of CPD lesions in UVA ‐irradiated keratinocytes and exhibited increased DNA repair of such photoproducts at 24 h postexposure. Finally, using DNA repair biochips, we demonstrated that SEE ‐treated keratinocytes had DNA enzymatic repair activities more efficient for abasic sites, CPD and thymine glycols. Therefore, the benefits of SEE against UVA could be explained by a combination of antioxidant activity, the reduction in DNA damage, and the enhancement of DNA repair capacities.  相似文献   

15.
The skin is in constant exposure to various external environmental stressors, including solar ultraviolet (UV) radiation. Various wavelengths of UV light are absorbed by the DNA and other molecules in the skin to cause DNA damage and induce oxidative stress. The exposure to excessive ultraviolet (UV) radiation and/or accumulation of damage over time can lead to photocarcinogenesis and photoaging. The nucleotide excision repair (NER) system is the sole mechanism for removing UV photoproduct damage from DNA, and genetic disruption of this repair pathway leads to the photosensitive disorder xeroderma pigmentosum (XP). Interestingly, recent work has shown that NER is controlled by the circadian clock, the body's natural time‐keeping mechanism, through regulation of the rate‐limiting repair factor xeroderma pigmentosum group A (XPA). Studies have shown reduced UV‐induced skin cancer after UV exposure in the evening compared to the morning, which corresponds with times of high and low repair capacities, respectively. However, most studies of the circadian clock–NER connection have utilized murine models, and it is therefore important to translate these findings to humans to improve skin cancer prevention and chronotherapy.  相似文献   

16.
Excision repair cross complementation group 1 (ERCC1) is an important protein in the nucleotide excision repair (NER) pathway, which is responsible for removing DNA adducts induced by platinum based compounds. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Genetic variations or polymorphisms in ERCC1 gene alter DNA repair capacity. Reduced DNA repair (NER) capacity may result in tumors and enhances cisplatin chemotherapy in cancer patients, which functions by causing DNA damage. Therefore, ERCC1 variants have the potential to be used as a strong candidate biomarker in cancer treatments. In this study we identified five variants V116M, R156Q, A199T, S267P, and R322C of ERCC1 gene as highly deleterious. Further structural and functional analysis has been conducted for ERCC1 protein in the presence of three variants V116M, R156Q, and A199T. Occurrence of theses variations adversely affected the regular interaction between ERCC1 and XPF protein. Analysis of 20 ns molecular dynamics simulation trajectories reveals that the predicted deleterious variants altered the ERCC1-XPF complex stability, flexibility, and surface area. Notably, the number of hydrogen bonds in ERCC1-XPF mutant complexes decreased in the molecular dynamic simulation periods. Overall, this study explores the link between the ERCC1 deleterious variants and cisplatin chemotherapy for various cancers with the help of molecular docking and molecular dynamic approaches.  相似文献   

17.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

18.
Different types of DNA lesions forming in close vicinity, create clusters of damaged sites termed as “clustered/complex DNA damage” and they are considered to be a major challenge for DNA repair mechanisms resulting in significant repair delays and induction of genomic instability. Upon detection of DNA damage, the corresponding DNA damage response and repair (DDR/R) mechanisms are activated. The inability of cells to process clustered DNA lesions efficiently has a great impact on the normal function and survival of cells. If complex lesions are left unrepaired or misrepaired, they can lead to mutations and if persistent, they may lead to apoptotic cell death. In this in silico study, and through rigorous data mining, we have identified human genes that are activated upon complex DNA damage induction like in the case of ionizing radiation (IR) and beyond the standard DNA repair pathways, and are also involved in cancer pathways, by employing stringent bioinformatics and systems biology methodologies. Given that IR can cause repair resistant lesions within a short DNA segment (a few nm), thereby augmenting the hazardous and toxic effects of radiation, we also investigated the possible implication of the most biologically important of those genes in comorbid non-neoplastic diseases through network integration, as well as their potential for predicting survival in cancer patients.  相似文献   

19.
Radiation therapy has been used in the treatment of a wide variety of cancers for nearly a century and is one of the most effective ways to treat cancer. Low-dose ionizing radiation (IR) can interfere with cell division of cancer and normal cells by introducing oxidative stress and injury to DNA. The differences in the response to IR-induced DNA damage and increased reactive oxygen species between normal human fibroblasts (NHFs) and cancerous SHSY-5Y cells were considered. H2AX staining and comet assays revealed that NHF cells responded by initiating a DNA repair sequence whereas SHSY-5Y cells did not. In addition, NHF cells appeared to quench the oxidative stress induced by IR, and after 24 h no DNA damage was present. SHSY-5Y cells, however, did not repair their DNA, did not quench the oxidative stress, and showed characteristic signs that they were beginning to undergo apoptosis. These results indicate that there is a differential response between this cancerous and normal cell line in their ability to respond to low-dose IR, and these differences need to be exploited in order to treat cancer effectively. Further study is needed in order to elucidate the mechanism by which SHSY-5Y cells undergo apoptosis following radiation and why these normal cells are better equipped to deal with IR-induced double-strand breaks and oxidative stress.  相似文献   

20.
Abstract— XP4L0, a xeroderma pigmentosum complementation group A strain, exhibits very limited DNA repair activity. It has extreme sensitivity to UV (254 nm) as determined by colony forming ability. The rate of loss of UV (1 J/m2)-induced pyrimidine dimers from populations of quiescent, nondividing XP4LO cells was determined and found to be slower than that observed for other group A strains (XP25R0, XP12BE, XP8LO). The extreme UV-sensitivity is also exhibited by the nondividing cells in a survival assay that employs nondividing cell populations and does not involve cell reproduction. This result suggests that the extreme sensitivity measured previously by colony-forming ability (a cell-reproduction assay) is due to the excision repair defect alone and not to an additional post-replication repair defect. The very limited excision allows for an accurate definition of target size for inactivation of nondividing cells, about 1 pyrimidine dimer per 105 base pairs, and when compared to results observed for other XP-A strains, provides further evidence that even though excision repair in group A is severely limited, it has biological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号