首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cycloadducts of isoquinolinium N‐phenyl imide 2 with C=C bonds are derivatives of 2‐amino‐1,2‐dihydroisoquinoline. Their Nβ‐vinylphenylhydrazine system is amenable to an acid‐catalyzed [3,3]‐sigmatropic shift; the formation of pentacyclic aminals is exemplified by 6 → 8 . The dimethyl maleate adduct 11 , C21H20N2O4, is exceptional by being converted on treatment with acid to bright‐yellow crystals, C24H22N2O6 (additional C3H2O2). X‐Ray crystal‐structure analysis and NMR spectra reveal structure 13 , and mechanistic studies indicated an initial β‐elimination at the N−N bond of 11 to yield 18 ; this step is followed by a retro‐Mannich‐type cleavage that gives methyl isoquinoline‐1‐acetate ( 14 ) and methyl 2‐(phenylimino)acetate ( 15 ), according to the sequence C21H20N2O4 ( 11 )→ 18 →C12H11NO2 ( 14 )+C9H9NO2 ( 15 ). In the second act of the drama, electrophilic attack by 15 ‐H+ on the ene‐hydrazine group of a second molecule of 11 furnishes 13 by a polystep intramolecular redox reaction. All rate constants must be fine‐tuned in this reaction cascade to give 13 in yields of up to 78% with an overall stoichiometry: 2 C21H20N2O4 ( 11 )→C24H22N2O6 ( 13 )+C12H11NO2 ( 14 )+aniline. Interception and model experiments confirmed the above pathway. A by‐product, C33H31N3O6 ( 62 ), arises from an acid‐catalyzed dimerization of 11 and subsequent elimination of 15 .  相似文献   

2.
In this paper, syntheses of 4‐amino‐3,5‐dinitropyrazole from four different starting materials are described. The starting materials were 4‐nitropyrazole, 4‐nitro‐3,5‐dimethylpyrazole, 3,5‐dinitropyrazole, and 4‐chloropyrazole, respectively. They are compared in terms of yield, number of steps and suitability for scale‐up into pilot scale production. The overall yield, calculated from commercially available starting materials, ranged from 21% in the case of synthesis via 3,5‐dinitropyrazole up to 61% for the one starting from 4‐chloropyrazole. With numerous factors taken into account, the latter was chosen for a pilot scale study and the product could be produced in batches of 200 g.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon‐rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN‐doped PAHs have been reported. Described herein is the rationally designed, two‐step syntheses of previously unknown ixene and BN‐doped ixene (B2N2‐ixene), and their characterizations. Compared to ixene, B2N2‐ixene absorbs longer‐wavelength light and has a smaller electrochemical energy gap. In addition to its single‐crystal structure, scanning tunneling microscopy revealed that B2N2‐ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2‐ixene and the effect of BN‐doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN‐doped systems with extended π‐conjugation that can be used in versatile organic electronics applications.  相似文献   

4.
In 4‐chloro‐7‐(2‐de­oxy‐β‐d ‐erythro‐pento­furanos­yl)‐7H‐pyr­rolo­[2,3‐d]­pyrimidine‐2,4‐diamine, C11H14ClN5O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −102.5 (6)°]. The 2′‐deoxy­ribofuranosyl unit adopts the C3′‐endo‐C4′‐exo (3T4) sugar pucker (N‐type) with P = 19.6° and τm = 32.9° [terminology: Saenger (1989). Landolt‐Börnstein New Series, Vol. 1, Nucleic Acids, Subvol. a, edited by O. Madelung, pp. 1–21. Berlin: Springer‐Verlag]. The orientation of the exocyclic C4′—C5′ bond is +ap (trans) with a torsion angle γ = 171.5 (4)°. The compound forms a three‐dimensional network that is stabilized by four inter­molecular hydrogen bonds (N—H⋯O and O—H⋯N) and one intra­molecular hydrogen bond (N—H⋯Cl).  相似文献   

5.
6.
In the title compound, C29H30N6, the naphthyridine ring is almost planar with a dihedral angle of 5.4 (1)° between the pyridyl rings. The dihedral angles between the naphthyridine system and the diethyl­amino­phenyl, phenyl and pyrrolidine rings are 53.1 (1), 19.8 (1) and 20.9 (1)°, respectively. The pyrrolidine ring adopts a half‐chair conformation. The mol­ecule is stabilized by weak C—H?N interactions.  相似文献   

7.
In the crystal structure of 3‐amino‐1,2,4‐triazine, C3H4N4, the mol­ecules form hydrogen‐bonded chains that are almost parallel to the b axis (3.2°), and which are inclined to the a and c axes by ~21 and ~69°, respectively. The distortion of the 1,2,4‐triazine ring in the crystal is compared with gas‐phase ab initio molecular‐orbital calculations.  相似文献   

8.
1,3‐Dipolar cycloaddition reaction between nitrile oxide and alkyne was used to capture 3‐amino‐4‐oxycyanofurazan (AOCF), which was considered as the key intermediate during the synthesis of 3,4‐bis(4‐aminofurazano‐3‐yl)furoxan (DATF) from 3‐amino‐4‐chloroximinofurazan. The isolated isoxazoles from the reaction afforded evidences for the existence of AOCF. The structures of the isoxazoles were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analysis. In addition, single crystal X‐ray diffraction of one isoxazole was obtained.  相似文献   

9.
The title compound, C10H16N·Cl·C2H6O, is an important intermediate in the convergent synthesis of amidine‐substituted polycyclic heterocycles, a class of compounds that shows significant anticancer activity. The molecule of (I) is not planar, having a dihedral angle of 25.00 (7)° between the aniline and amidine (–C—NH=C=NH2) groups. The proton­ation of the amidine molecular fragment is accompanied by delocalized C—N bond distances of 1.320 (2) and 1.317 (2) Å. The cations and chloride anions are involved in a network of hydrogen bonds, resulting in the formation of infinite chains propagating along the b direction. The chains are further grouped within the ab plane, in such a way that the structure is segregated into layers dominated by hydro­phobic interactions involving N‐isopropyl residues and layers dominated by N—H⋯Cl [N⋯Cl = 3.275 (2)–3.596 (2) Å], O—H⋯Cl [O⋯Cl = 3.229 (3) Å] and N—H⋯O [N⋯O = 2.965 (3) Å] hydrogen bonds.  相似文献   

10.
In the title compound, C29H30N6O, the naphthyridine moiety is planar with a dihedral angle between the fused rings of 1.9 (1)°. The phenol ring is nearly coplanar, while the diethyl­amino­phenyl substituent is orthogonal to the central naphthyridine ring and the pyrrolidine ring makes an angle of 11.2 (1)° with it. The O atom of the hydroxy substituent is coplanar with the phenyl ring to which it is attached. The molecular structure is stabilized by a C—H?N‐type intramolecular hydrogen bond and the packing is stabilized by intermolecular C—H?π, O—H?N and N—H?O hydrogen bonds.  相似文献   

11.
The structure of the title compound, C9H8N4, comprises non‐planar mol­ecules that associate via pyrimidine N—H?N dimer R(8) hydrogen‐bonding associations [N?N 3.1870 (17) Å] and form linear hydrogen‐bonded chains via a pyrimidine N—H?N(pyridyl) interaction [N?N 3.0295 (19) Å]. The dihedral angle between the two rings is 24.57 (5)°. The structure of the 1:1 adduct with 4‐amino­benzoic acid, C9H8N4·C7H7NO2, exhibits a hydrogen‐bond­ing network involving COOH?N(pyridyl) [O?N 2.6406 (17) Å], pyrimidine N—H?N [N?N 3.0737 (19) and 3.1755 (18) Å] and acid N—H?O interactions [N?O 3.0609 (17) and 2.981 (2) Å]. The dihedral angle between the two linked rings of the base is 38.49 (6)° and the carboxyl­ic acid group binds to the stronger base group in contrast to the (less basic) complementary hydrogen‐bonding site.  相似文献   

12.
13.
Low‐temperature irradiation of linear [3]‐ and [4]phenylene cyclopentadienylcobalt complexes generates labile, fluxional η4‐arene complexes, in which the metal resides on the terminal ring. Warming induces a haptotropic shift to the neighboring cyclobutadiene rings, followed by the previously reported intercyclobutadiene migration. NMR scrutiny of the primary photoproduct reveals a thermally accessible 16‐electron cobalt η2‐triplet species, which, according to DFT computations, is responsible for the rapid symmetrization of the molecules along their long axes. Calculations indicate that the entire haptotropic manifold along the phenylene frame is governed by dual‐state reactivity of alternating 18‐electron singlets and 16‐electron triplets.  相似文献   

14.
Diaminomaleonitrile and N‐arylbenzamidrazones reacted together to give 4‐amino‐5‐iminopyrazoles. A probable reaction mechanism involves firstly removal of ammonia, followed by addition and cylization of the hydrazino‐N 2 of amidrazone to the nitrile group in diaminomaleonitrile. The structure of the obtained products was proved by IR, mass, NMR spectra and elemental analyses.  相似文献   

15.
16.
17.
Mononuclear coordination compounds of the type [Pd(NH2trz)4]2+ with the counterions chloride, nitrate, trifluoromethanesulfonate, and methanesulfonate were synthesized and their structures identified with single‐crystal X‐ray diffraction. In case of the synthesis with methanesulfonate as the counterion the dominant product was of the generic formula [Pd2(NH2trz)3](CH3SO3)4, and the complex [Pd(NH2trz)4](CH3SO3)2 only emerged as a byproduct. While the structure of the byproduct could be analyzed by single‐crystal X‐ray diffraction, suitable crystals of the main product [Pd2(NH2trz)3](CH3SO3)4 could not be obtained. However, stoichiometry implies a polynuclear nature with NH2trz present in the rare μ3‐η111 coordination type, i.e. with NH2trz molecules coordinating to three palladium atoms. Accordingly, identification of solids by single‐crystal analysis alone can be misleading in particular with NH2trz as a ligand due to its versatile coordination behavior. Finally, analysis by differential scanning calorimetry (DSC) revealed that the complexes were thermally stable (the onset of decomposition well above 100 °C), with [Pd2(NH2trz)3](CH3SO3)4 being the most stable compound (onset of decomposition at 204 °C).  相似文献   

18.
Optically active 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carboxylates, 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles, and 2‐amino‐8‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles were synthesized. Using cinchona alkaloid‐derived bifunctional catalysts, the corresponding 2‐amino‐4H‐chromene derivatives were obtained in high yields and moderate to high ee values (up to 82% ee) from the tandem Michael addition–cyclization reaction between 1,3‐cyclohexanediones or 1,2‐cyclohexanediones and (E )‐3‐aryl‐2‐cyanoacrylate or alkylidene malononitrile derivatives.  相似文献   

19.
Palladium‐catalyzed aminocarbonylation of iodobenzene and iodoalkenes (1‐iodocyclohexene, 4‐tert‐butyl‐1‐iodocyclohexene, α‐iodostyrene, 17‐iodoandrost‐16‐ene) was carried out using a free radical (4‐amino‐TEMPO) for the first time. Its reduced form (4‐amino‐2,2,6,6‐tetramethylpiperidine) was also used as N‐nucleophile. The free radical was partially reduced under aminocarbonylation conditions; however, the isolation of carbonylated products bearing a stable radical moiety was successfully accomplished. It was proved that the reduction of the 1‐oxyl functionality took place to higher extent when more severe conditions (40 bar CO pressure) were used. The mixture of carboxamide and 2‐ketocarboxamide products was obtained using iodobenzene because of single and double carbon monoxide insertion, respectively. In turn, carboxamide derivatives were formed exclusively when iodoalkenes were used as substrates.  相似文献   

20.
The supramolecular structure of the title compound, C18H17ClN2O2, is determined by the intersection of two chains formed by N—H⋯O and N—H⋯N hydrogen bonds, forming a two‐dimensional sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号