首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了3个钌髤配合物,[Ru(bpy)2(SB)](PF6)2、[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2(bpy=2,2′-bipyridine,SB=4,5-diaza-9,9′-spirobifluorene),通过核磁和元素分析对配合物的结构进行了确定。[Ru(bpy)2(SB)](PF6)2通过X射线单晶衍射确认了结构。研究了配合物的光物理性能。结果表明[Ru(bpy)2(SB)](PF6)2在乙腈中的发桔红光,波长为606 nm,量子产率约为0.001 2。在同样条件下[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2的发光非常微弱甚至几乎没有发光。还研究了这些配合物的电致化学发光性能。随着配体中SB含量的增加,发光的峰电压从1.36 V增加到1.58 V,相对发光强度从731降低到52。  相似文献   

2.
本文合成了3个新钌(Ⅱ)配合物,[Ru(bpy)2(SB)](PF62、[Ru(bpy)(SB)2](PF62和[Ru(SB)3](PF62(bpy=2,2’-bipyridine,SB=4,5-diaza-9,9’-spirobifluorene),通过核磁和元素分析对配合物的结构进行了确定。[Ru(bpy)2(SB)](PF62通过X射线单晶衍射确认了结构。研究了配合物的光物理性能。结果表明[Ru(bpy)2(SB)](PF62在乙腈中的发桔红光,波长为606nm,量子产率约为0.0012。在同样条件下[Ru(bpy)(SB)2](PF62和[Ru(SB)3](PF62的发光非常微弱甚至几乎没有发光。还研究了这些配合物的电致化学发光性能。随着配体中SB含量的增加,发光的峰电压从1.36V增加到1.58V,相对发光强度从731降低到52。  相似文献   

3.
Two new bichromophoric ruthenium(II) complexes, [Ru(bpy)2(bpy‐CM)](PF6)2 and [Ru(bpy)2(bpy‐CM343)](PF6)2 (bpy=2,2′‐bipyridine, CM=coumarin) with appended coumarin ligands have been designed and synthesized. The energy‐transfer‐based sensing of esterase by the complexes has been studied by using UV/Vis and luminescence spectroscopic methods. The cytotoxicity and the cellular uptake of one of the complexes have also been investigated.  相似文献   

4.
The complexes [Ru(bpy)2(pyESO)](PF6)2 and [Os(bpy)2(pyESO)](PF6)2, in which bpy is 2,2′‐bipyridine and pyESO is 2‐((isopropylsulfinyl)ethyl)pyridine, were prepared and studied by 1H NMR, UV–visible and ultrafast transient absorption spectroscopy, as well as by electrochemical methods. Crystals suitable for X‐ray structural analysis were grown for [Ru(bpy)2(pyESO)](PF6)2. Cyclic voltammograms of both complexes provide evidence for S→O and O→S isomerization as these voltammograms are described by an ECEC (electrochemical‐chemical electrochemical‐chemical) mechanism in which isomerization follows Ru2+ oxidation and Ru3+ reduction. The S‐ and O‐bonded Ru3+/2+ couples appear at 1.30 and 0.76 V versus Ag/AgCl in propylene carbonate. For [Os(bpy)2(pyESO)](PF6)2, these couples appear at 0.97 and 0.32 V versus Ag/AgCl in acetonitrile, respectively. Charge‐transfer excitation of [Ru(bpy)2(pyESO)](PF6)2 results in a significant change in the absorption spectrum. The S‐bonded isomer of [Ru(bpy)2(pyESO)]2+ features a lowest energy absorption maximum at 390 nm and the O‐bonded isomer absorbs at 480 nm. The quantum yield of isomerization in [Ru(bpy)2(pyESO)]2+ was found to be 0.58 in propylene carbonate and 0.86 in dichloroethane solution. Femtosecond transient absorption spectroscopic measurements were collected for both complexes, revealing time constants of isomerizations of 81 ps (propylene carbonate) and 47 ps (dichloroethane) in [Ru(bpy)2(pyESO)]2+. These data and a model for the isomerizing complex are presented. A striking conclusion from this analysis is that expansion of the chelate ring by a single methylene leads to an increase in the isomerization time constant by nearly two orders of magnitude.  相似文献   

5.
A series of dicarbene‐bridged metallacycles [Ag2( 1 )2](PF6)2, [Ag2( 2 )2](BF4)2, [Ag2( 3 )2](PF6)2, [Ag2( 7 )2](BF4)2, [Ag2( 8 )2](BF4)2 and [Ag2( 11 )2](PF6)2 were obtained in high yields via the reactions of 1,2,4‐triazole‐, 1,2,3‐triazole‐ and imidazo[1,5‐a]pyridine‐based ligands with Ag2O in CH3CN. The C=C double bonds in all of the newly synthesized metallacycles went through [2 + 2] photodimerization under UV irradiation condition (λ = 365 nm, T = 298 K) yielding the dinuclear rctt‐cyclobutane‐silver(I) complexes [Ag2( 4 )](PF6)2, [Ag2( 5 )](BF4)2, [Ag2( 6 )](PF6)2, [Ag2( 9 )](BF4)2, [Ag2( 10 )](BF4)2 and [Ag2( 12 )](PF6)2, respectively with quantitative yields. Treatment of the these cyclobutane‐bridged silver(I) complexes with NH4Cl resulted in the exclusive formation of cyclobutane derivatives after removal of the silver(I) metal ions.  相似文献   

6.
5,5′-Bi-5H-cyclopenta[2,1-b;3,4-b′]dipyridinylidene( 1 ) was synthesized in three steps from 9,10-phenanthroline and characterized by UV/VIS and NMR spectroscopy, mass spectrometry, and cyclic voltammetry. Its ability to act as a bridging ligand is demonstrated by the synthesis of the complexes [Ru(bpy)2( 1 )](PF6)2 ( 6 ) and [{Ru(bpy)2}2( 1 )](PF6)4 ( 7 ) (bpy = 2,2′-bipyridine).  相似文献   

7.
New cyclometalated Pt(II) complexes bearing 1,2-phenylenediamine (pda) derivatives were synthesized and their chemical and electrochemical properties were investigated. Two Pt complexes, [Pt(bzqn) (pda)](PF6) (bzqn = benzo[h]quinoline, [1](PF6): pda = 1,2-phenylenediamine, [2](PF6): pda = 4,5-dimethyl-1,2-phenylenediamine), were synthesized by the reaction of (Bu4N)[PtCl2(bzqn)] with corresponding pda derivatives. The Pt-pda complexes were converted to Pt-bda (bda = 1,2-benzenediamide) complexes by treatment of 2 mol equiv of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and they showed two-step reversible redox couples in cyclic voltammetry. The cyclometalated ligand gave a strong electronic effect to the bda ligand to take place the negative shift of the bda-based redox potentials.  相似文献   

8.
Six bis‐tridentate and two tris‐bidentate cyclometalated ruthenium complexes with a 1,2,3‐triazole‐containing ligand have been prepared and characterized. Single‐crystal X‐ray analyses of complexes [(MeOptpy)Ru(Budtab)](PF6) and [(Mebip)Ru(Budtab)](PF6) are presented, where MeOptpy is 4′‐p‐methoxyphenyl‐2,2′:6′,2′′‐terpyridine, Budtab is the 2‐deprotonated form of 1,3‐di(Nn‐butyl‐1,2,3‐triazol‐4‐yl)benzene, and Mebip is bis(N‐methyl‐benzimidazolyl)pyridine. The electronic properties of these complexes are probed by spectroscopic and electrochemical analyses. Time‐dependent density functional theory calculations have been performed to assist the assignment of the absorption spectra.  相似文献   

9.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Fast-atom bombardment (FAB) mass spectrometry in the negative ionization mode enables the sputtering into the gas phase of the ruthenium complexes [Ru(2,2′-bipyridine[bpy])2(2,5-bis) (pyrydil)pyrazine[dpp])](PF6)2; [Ru(bpy)2,(2,3dpp)](PF6)2;[Ru(bpy)2,(2,3-dpp-Me)]( PF6)3; and [Ru(bpy)2(?-2,3-dpp)]2 RuCl2(PF6)4 as intact radical anions. These data, combined with those avaiiable from the positive FAB spectra allow a full characterization of the analytes.  相似文献   

12.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

13.
Metallosupramolecular poly‐NHC‐metal assemblies were prepared from trigonal hexakis (H6‐ 1 a (PF6)6 and H6‐ 1 b (PF6)6) or nonakis (H9‐ 3 (BF4)9) imidazolium salts and Ag2O. Complexes [Ag6( 1 a )2](PF6)6 and [Ag6( 1 b )2](PF6)6 are built from six Ag+ ions sandwiched between two trigonal hexacarbene ligands with an inner and an outer NHC donor in each of the three ligand arms. The metal atoms are arranged in two triangles. The hexakis‐NHC ligands bear cinnamic ester groups at the outlying NHC donors, used in postsynthetic [2+2] cycloaddition reactions linking two hexakis‐NHC ligands by three cyclobutane units to give complexes [Ag6( 2 a )](PF6)6 and [Ag6( 2 b )](PF6)6 bearing a dodecacarbene ligand. From the related nonakisimidazolium salt H9‐ 3 (BF4)9, complex [Ag9( 4 )](BF4)9 bearing an octadecacarbene ligand was obtained. Removal of the template metals yielded very large, stable, polyimidazolium cations with 12 or 18 internal imidazolium groups.  相似文献   

14.
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement.  相似文献   

15.
A new bimetallic complex, [Ru(biq)2(dpp)PtCl2](PF6)2 (where biq = 2,2′-biquinoline and dpp = 2,3-bis(2-pyridyl)pyrazine), containing a cis-PtCl2 moiety coupled to a sterically strained Ru(II)-based chromophore was designed, synthesized, and investigated with respect to its spectroscopic, redox, photo-induced ligand exchange, and DNA-interaction properties. The electrochemistry of the designed complex was found to be consistent with the bridging coordination of the dpp ligand and formation of the bimetallic complex. The complex displays intense ligand-based π → π* transitions in the UV region and metal-to-ligand charge-transfer transitions (MLCT) in the visible region. The loss of bridging coordination of the dpp ligand and formation of complexes, [Ru(biq)2(CH3CN)2]2+ and [Pt(dpp)(CH3CN)2]2+ was observed when an acetonitrile solution of the metal complex was irradiated with visible light (λirr ≥ 550 nm). The designed complex displays covalent binding with DNA in dark through the cis-PtCl2 moiety, as confirmed by agarose gel electrophoresis. Upon photoirradiation, the complex dissociates into two DNA-binding moieties and displays covalent binding through: (i) a cis-PtL2 subunit of [Ptdpp(L)2]2+ and (ii) open coordination sites of the ruthenium of [Ru(biq)2(L)2]2+ (L = solvent). The designed complex represents the first Ru(II)Pt(II) complex that undergoes photo-induced ligand exchange and displays multifunctional interactions with DNA upon photoirradiation.  相似文献   

16.
The crystal structures of [Ru(terpy)(HPB)(H2O)](PF6)2, 1, and [Ru(terpy)(HPB)(2-picoline)](PF6), 2, (where terpy = 2,2′:6′,2′′-terpyridine and HPB = 2-(2′-hydroxyphenyl)-benzoxazole) have been determined. Both structures show slightly distorted octahedral coordination around the ruthenium center. In complex 1, the imine nitrogen of the HPB ligand occupies an axial position and is trans to the aqua ligand whereas in complex 2, the imine nitrogen is trans to the nitrogen of the 2-picoline ligand. The Ru-N(2-picoline) bond distance is much longer than the other Ru-N bonds in the complex due to steric effects from the methyl group of 2-picoline. In both complexes, the phenolate oxygen of the HPB ligand is in the equatorial position and trans to the center nitrogen of the terpyridine. The reaction of [Ru(terpy)(HPB)(H2O)](PF6)2 with pyridine and its analogs, 2-picoline and 4-picoline in dichloromethane was monitored spectrophotometrically. There is an initial reduction of the [Ru(III)-H2O] complex to [Ru(II)-H2O] complex prior to the substitution of the aqua ligand. The values of the activation parameters indicate that the substitution of the aqua ligand by pyridine, 2-picoline and 4-picoline follow an associative mechanism.  相似文献   

17.
Ruthenium(II) polypyridyl complexes with long‐wavelength absorption and high singlet‐oxygen quantum yield exhibit attractive potential in photodynamic therapy. A new heteroleptic RuII polypyridyl complex, [Ru(bpy)(dpb)(dppn)]2+ (bpy=2,2′‐bipyridine, dpb=2,3‐bis(2‐pyridyl)benzoquinoxaline, dppn=4,5,9,16‐tetraaza‐dibenzo[a,c]naphthacene), is reported, which exhibits a 1MLCT (MLCT: metal‐to‐ligand charge transfer) maximum as long as 548 nm and a singlet‐oxygen quantum yield as high as 0.43. Steady/transient absorption/emission spectra indicate that the lowest‐energy MLCT state localizes on the dpb ligand, whereas the high singlet‐oxygen quantum yield results from the relatively long 3MLCT(Ru→dpb) lifetime, which in turn is the result of the equilibrium between nearly isoenergetic excited states of 3MLCT(Ru→dpb) and 3ππ*(dppn). The dppn ligand also ensures a high binding affinity of the complex towards DNA. Thus, the combination of dpb and dppn gives the complex promising photodynamic activity, fully demonstrating the modularity and versatility of heteroleptic RuII complexes. In contrast, [Ru(bpy)2(dpb)]2+ shows a long‐wavelength 1MLCT maximum (551 nm) but a very low singlet‐oxygen quantum yield (0.22), and [Ru(bpy)2(dppn)]2+ shows a high singlet‐oxygen quantum yield (0.79) but a very short wavelength 1MLCT maximum (442 nm).  相似文献   

18.
Three new Ru(II) complexes, [Ru(dmb)2(ipad)](ClO4)2 (dmb = 4,4′-dimethyl-2,2′-bipyridine, ipad = 2-(anthracene-9,10-dione-2-yl) imidazo[4,5-f][1,10]phenanthroline, 1), [Ru(dmp)2(ipad)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, 2), and [Ru(dip)2(ipad)](ClO4)2 (dip = 4,7-diphenyl-1,10-phenanthroline, 3), have been synthesized and characterized. The three Ru(II) complexes intercalate with the base pairs of DNA. The in vitro antiproliferative activities and apoptosis-inducing characteristics of these complexes were investigated. The complexes exhibited cytotoxicity against various human cancer cell lines. BEL-7402 cells displayed the highest sensitivity to 1, accounted for by the greatest cellular uptake. Complex 1 was shown to accumulate preferentially in the nuclei of BEL-7402 cells and cause DNA damage and induce apoptosis, which involved cell cycle arrest and reactive oxygen species generation.  相似文献   

19.
Three heterotopic ligands L1, L2, and L3 based on 1,10-phenanthroline and 2,2′-bipyridine moieties have been synthesized and characterized. The Ru(II) complexes [{Ru(bpy)2}33-L1)](PF6)6, [{Ru(bpy)2}33-L2)](PF6)6, and [{Ru(bpy)2}22-L3)](PF6)4 (bpy = 2,2′-bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O with each ligand in ethanol. All three complexes display MLCT absorptions at around 455 nm and emissions at around 618 nm. Electrochemical studies of the complexes reveal one Ru(II)-centered quasi-reversible oxidation at around 1.32 V and three ligand-centered reductions in each case.  相似文献   

20.
A series of substituted pyrazino[2,3‐f][1,10]‐phenanthroline (Rppl) ligands (with R=Me, COOH, COOMe) were synthetized (see 1 – 4 in Scheme 1). The ligands can be visualized as formed by a bipyridine and a quinoxaline fragment (see A and B ). Homoleptic [Ru(R1ppl)3](PF6)2 and heteropleptic [Ru(R1ppl){(R2)2bpy}2](PF6)2 (R1=H, Me, COOMe and R2=H, Me) metal complexes 5 – 7 and 8 – 13 , respectively, based on these ligands were also synthesized and characterized by conventional techniques (Schemes 2 and 3, resp.). In the heteroleptic complexes, the R1‐ppl ligand reduces at a less‐negative potential than the bpy ligand, reflecting the acceptor property conferred by the quinoxaline moiety. The potentiality of some of these complexes as solar‐cell dyes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号