首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Gallium activity in the B2 (CsCl-type) phase of ternary Co–Ga–X (X = Ge, Ni, and Fe) alloys was measured by the EMF method with a stabilized zirconia solid electrolyte. The temperature range was 1050–1250 K and the concentrations of the added elements were 2–6 at-% Ge and Ni, and 1–3 at-% Fe. The reference electrodes were Fe,FexO or Ga,Ga2O3. The effect on the activity of gallium in the B2 phase with the addition of other elements was found to be the largest with Ge and the smallest in the case of Ni.  相似文献   

2.
《Polyhedron》2007,26(9-11):2281-2286
Films of the photomagnetic Prussian blue analogue Rb0.7Co4(Fe(CN)6)3.0(Co–Fe PBA) were deposited onto a Melinex® substrate using two different multiple sequential adsorption methods. Film thickness, measured using atomic force microscopy, was controlled by the number of deposition cycles. The photoinduced magnetism known for the bulk Co–Fe PBA at low temperatures is also seen in the thin films, although the response is anisotropic. A photoinduced increase in magnetization is observed when the film is parallel (∥) to the applied magnetic field (HE), while a photoinduced decrease is observed when the film is perpendicular (⊥) to a weak HE. The relationship between the film thickness and the photoinduced decrease in magnetization is explored in this article. The photoinduced decrease is observed for films less than ∼200 nm thick. The behavior is explained by invoking a dipolar interaction between primordial ferrimagnetic domains and the photoswitchable pairs arrayed in the quasi-2D thin film.  相似文献   

3.
Thin films of cobalt-iron cyanide (Co-Fe Prussian blue) have been fabricated by means of the modified Langmuir-Blodgett (LB) method using a smectite clay mineral (montmorillonite). In this combined method, clay LB films play a template role in the formation of the Co-Fe Prussian blue thin layer. The films were revealed to possess a well-organized structure not only in perpendicular directions to the film surface but also in parallel directions to the film surface. The photoinduced electron transfer from the iron ion to the cobalt through the bridging cyanide in the films occurred at low temperature (8 K), similar to that in the bulk Co-Fe Prussian blue. The films clearly exhibited magnetic anisotropy with regards to the direction of the applied magnetic field. Moreover, the photoinduced magnetization effect in the films was also found to be anisotropic.  相似文献   

4.
This paper describes a method for fabrication of silica-coated Co–Pt alloy nanoparticles in a liquid phase process. The Co–Pt nanoparticles were prepared from CoCl2 (4.2 × 10−5 M), H2PtCl6 (1.8 × 10−5 M), citric acid (4 × 10−4 M) and NaBH4 (1.2 × 10−2 M) with a Co:Pt mole ratio of 7:3. The silica coating was performed in water/ethanol solution with a silane coupling agent, 3-aminopropyltrimethoxysilane (8 × 10−5 M), and a silica source, tetraethoxyorthosilicate (7.2 × 10−4 M) in the presence of the Co–Pt nanoparticles. Observations with a transmittance electron microscope and a scanning transmission electron microscope revealed that the Co-rich and Pt-rich nanoparticles were coated with silica. According to X-ray diffraction measurements, core particles were crystallized to metallic Co crystallites and fcc Co–Pt alloy crystallites with annealing in air at 300–500 °C. Magnetic properties of the silica-coated particles were strongly dependent on annealing temperature. Maximum values of 11.4 emu/g-sample for saturation magnetization and 365 Oe for coercive field were obtained for the particles annealed at 300 and 500 °C, respectively. Annealing at a temperature as high as 700 °C destroyed the coating structures because of crystallization of silica shell, resulting in reduction in saturation magnetization and coercive field.  相似文献   

5.
The deep blue organoclay color pigment (OCCP), naphthylazonaphthylammonium–montmorillonite, was synthesized in an aqueous suspension by treating montmorillonite with naphthylammonium chloride followed after 2 h by NaNO2. The reddish-brown azo dye naphthylazonaphthylamine (commercial name “Solvent Brown 3”) was synthesized in an aqueous solution in the absence of clay from the same reagents. X-ray diffraction and thermo-infrared (IR) spectroscopy of organoclay prepared by treating montmorillonite with naphthylammonium chloride showed that the organoclay contained two types of tactoids with intercalated naphthylammonium cations and with naphthylammonium–naphthylamine associations. Naphthylammonium clay was obtained after thoroughly washing the latter organoclay. IR spectra of naphthylamine, naphthylammonium chloride, naphthylammonium clay, naphthylammonium–naphthylamine clay (with some naphthylammonium-clay), OCCP, and Solvent Brown 3 in KBr disks were recorded before and after thermal treatments up to 120 °C. IR spectrum of the OCCP was similar to that of Solvent Brown 3. An NH3 + group was identified in the spectrum of the OCCP but not in that of Solvent Brown 3. In the latter spectrum, an NH2 group was identified, suggesting that the amine group of the azo dye in the OCCP was protonated. It appears that the difference in color between OCCP and Solvent Brown 3 resulted from the protonation of the azo molecule in the interlayer space of the clay.  相似文献   

6.
Poly(vinyl acetate) (PVAc)–poly(vinyl alcohol)–montmorillonite (MMT) nanocomposite microspheres were prepared through suspension polymerization followed by the heterogeneous saponification. The effects of MMT on the polymerization rate and the saponification rate of PVAc were studied. It was found that the rate of polymerization decreased when MMT content was increased. However, the saponification rate of PVAc significantly increased in the presence of nanoclay particles. The XRD measurement illustrated that the clay particles are intercalated in the polymer matrix.  相似文献   

7.
The conductivity and luminescence of conjugated polymers may be combined with the photoisomerization capability of azobenzene materials to achieve unique properties for a variety of applications, particularly if conjugated polymers with azobenzene side chains are processed as nanostructured films. In this study, we report on Langmuir–Blodgett (LB) films of a polythiophene-bearing azobenzene moieties, which displayed photoluminescence, thermochromism, electroactivity, and photoinduced birefringence. The latter three properties were enhanced in the LB films, as compared to spin-coated films of the polyazothiophene, and this has been attributed to differences in film morphology that could be probed with atomic force microscopy.  相似文献   

8.
The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.  相似文献   

9.
Electrochemical reductive dissolution of Li–Mn–O and Li–Fe–Mn–O spinels and Li+ extraction/insertion in these oxides were performed using voltammetry of microparticles. Both electrochemical reactions are sensitive to the Fe/(Fe+Mn) ratio, specific surface area, Li content in tetrahedral positions, and Mn valence, and can be used for electrochemical analysis of the homogeneity of the elemental and phase composition of synthetic samples. The peak potential (E P) of the reductive dissolution of the Li–Mn–O spinel is directly proportional to the logarithm of the specific surface area. E P of Li–Fe–Mn–O spinels is mainly controlled by the Fe/(Fe+Mn) ratio. Li+ insertion/extraction can be performed with Mn-rich Li–Fe–Mn–O spinels in aqueous solution under an ambient atmosphere and it is sensitive to the regularity of the spinel structure, in particularly to the amount of Li in tetrahedral positions and the Mn valence. Electronic Publication  相似文献   

10.
Conducting polymers were deposited on the surface of platinum and glassy carbon electrodes. The monomers used were N-methyl pyrrole and 3-methyl thiophene. The electrochemical synthesis of the polymer was achieved using constant applied potential or cyclic polarization techniques in acetonitrile as a solvent and tetra-alkyl ammonium salts as supporting electrolyte. The resulting conducting polymeric film was modified with an inorganic metal complex, namely, Cu–phthalocyanine or Co–phthalocyanine. Two different approaches were adopted for the modification: (1) the first was to directly apply the metal–phthalocyanine layer on the surface of the polymer, and (2) the second was by the inclusion of the metal–phthalocyanine in a sol–gel matrix that was in turn applied to the conducting polymer film. In the first part of this work, we studied the effect of changing the type of polymer matrix and the central metal of the inorganic complex on the electrochemical behavior of the resulting film. We also found that changing the method of metal–phthalocyanine application to the polymer film affected the electrochemical response and kinetics at the electrode surface. The new electrode was tested for the reduction of hydrogen peroxide and showed better conversion efficiency compared to conventional surfaces, which suggests its use in fuel cell applications.  相似文献   

11.
HY–Al2O3-supported CoMo catalysts with a chelating agent and phosphorus for the hydrodesulfurization (HDS) of diesel fractions were prepared. The activity measurements with the prepared catalysts were carried out with straight-run light gas oil feedstocks in a pilot plant under industrial hydrotreating conditions. As a result, Cosmo Oil Co., Ltd. developed a new CoMoP/HY–Al2O3 catalyst, C-606A, which had three times higher HDS activity than the conventional CoMoP/Al2O3 catalyst. Commercial operations to produce ultra-low sulfur diesel (ULSD) with C-606A have successfully demonstrated its high performance and high stability. This catalyst has an extremely high activity, which enables to achieve <10-ppm sulfur in products in diesel hydrotreater designed to produce 500-ppm sulfur diesel fuels. Mo K-edge EXAFS, TEM and FT-IR of adsorbed NO were performed to investigate the nature of the active sites on the developed catalysts. The results showed that the new catalyst has multiple layers of MoS2 slabs and the edges of MoS2 are mainly occupied by Co–Mo–S phases. XPS and FT-IR were used to investigate the sulfiding behavior of Co and Mo in the formation process of the active sites during sulfidation. The results showed that addition of carboxylic acid to the impregnation solution postponed the sulfidation of Co at low temperatures, thereby increasing formation of the Co–Mo–S phase.  相似文献   

12.
This paper describes a novel method to determine methimazole by spectrophotometry using a potassium ferricyanide-Fe(III) reaction. The study indicates that at pH 4.0 Fe(III) is reduced to Fe(II) by methimazole and in situ formed Fe(II) reacts with potassium ferricyanide to give soluble Prussian Blue which is characterized by means of XRD analysis. The absorbance of Prussian Blue is measured at the absorption maximum of 735 nm, and the amount of methimazole can be determined based on this absorbance. Beer’s law is obeyed in the range of methimazole concentrations of 0.02–6.00 μg/mL. The equation of the linear regression is A = −0.0058 + 0.49988c (μg/mL), with a correlation coefficient of 0.9998 and RSD of 0.80%. The detection limit (3σ/k) is 0.015 μg/mL, and the apparent molar absorption coefficient of indirect determination of methimazole is 5.7 ± 104 L/mol cm. This method has been successfully applied to the determination of methimazole in pharmaceutical, serum and urine samples, and average recoveries are in the range of 98.6–102.4%. Analytical results obtained with this novel method are satisfactory.  相似文献   

13.
Regular hexagonal Co–Al layered double hydroxides (Co–Al LDH) were synthesized by urea-induced homogeneous precipitation. This material proved to be nanosheets by scanning electron microscopy and X-ray diffraction measurements. The electrochemical capacitive behavior of the nanosheets in 1 M KOH solution were evaluated by constant current charge/discharge and cyclic voltammetric measurements, showing a large specific capacitance of 192 F·g−1 even at the high current density of 2 A·g−1. When multiwall carbon nanotubes (MWNTs) were mixed with the Co–Al LDH, it was found that the specific capacitance and long-life performance of all composite electrodes at high current density are superior to pure LDH electrode. When the added MWNTs content is 10 wt%, the specific capacitance increases to 342.4 F·g−1 and remains at a value of 304 F·g−1 until the 400th cycle at 2 A·g−1, showing that this is a promising electrode material for supercapacitors working at heavy load. According to the electrochemical impedance spectra, MWNTs greatly increase the electronic conductivity between MWNTs and the surface of Co–Al LDH, which consequently facilitates the access of ions in the electrolyte and electrons to the electrode/electrolyte interface.  相似文献   

14.
A cranium stored in the Stiftung Mozarteum in Salzburg/Austria which is believed to be that of Mozart, and skeletal remains of suspected relatives which have been excavated from the Mozart family grave in the cemetery in Salzburg, have been subjected to scientific investigations to determine whether or not the skull is authentic. A film project by the Austrian television ORF in collaboration with Interspot Film on this issue was broadcast at the beginning of the “Mozart year 2006”. DNA analysis could not clarify relationships among the remains and, therefore, assignment of the samples was not really possible. In our work this skull and excavated skeletal remains have been quantified for Pb, Cr, Hg, As, and Sb content by laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS) to obtain information about the living conditions of these individuals. A small splinter of enamel (less than 1 mm3) from a tooth of the “Mozart cranium” was also available for investigation. Quantification was performed by using spiked hydroxyapatite standards. Single hair samples which are recorded to originate from Mozart have also been investigated by LA–ICP–MS and compared with hair samples of contemporary citizens stored in the Federal Pathologic–Anatomical Museum, Vienna. In general, Pb concentrations up to approximately 16 μg g−1 were found in the bone samples of 18th century individuals (a factor of 7 to 8 higher than in recent samples) reflecting elevated Pb levels in food or beverages. Elevated Pb levels were also found in hair samples. The amount of Sb in the enamel sample of the “Mozart cranium” (approx. 3 μg g−1) was significantly higher than in all the other tooth samples investigated, indicating possible Sb ingestion in early childhood. Elevated concentrations of elements in single hair samples gave additional information about possible exposure of the individuals to heavy metals at a particular point in their life.  相似文献   

15.
This paper develops a framework for the interpretation of ionic insertion/deinsertion reactions in an aqueous environment taking place in transition-metal hexacyanoferrates of the general formula K(h)[Fe(2+) (CN)(6)](l).mH(2)O, also called Prussian Blue. Three different processes were fully separated in the electrochemistry of these films. It was clearly identified that one of these electrochemical processes involves the insertion/deinsertion of H(3)O(+) (hydrated protons) through the channels of the K(h)[Fe(2+) (CN)(6)](l).mH(2)O structure to reach the film electroneutrality during the electron transfer between Everitt's Salt and Prussian Blue. The other electrochemical processes involve K(+) or H(+) (proton) exchange through the water crystalline structure existing in the channels of the K(h)[Fe(2+)(CN)(6)](l).mH(2)O structure.  相似文献   

16.
Gallium activity in the B2 (CsCl-type) phase of ternary Co–Ga–X (X = Ge, Ni, and Fe) alloys was measured by the EMF method with a stabilized zirconia solid electrolyte. The temperature range was 1050–1250 K and the concentrations of the added elements were 2–6 at-% Ge and Ni, and 1–3 at-% Fe. The reference electrodes were Fe,FexO or Ga,Ga2O3. The effect on the activity of gallium in the B2 phase with the addition of other elements was found to be the largest with Ge and the smallest in the case of Ni.  相似文献   

17.
This paper describes the preparation of dispersed onion-like Pd–Bi–Au/C catalyst with average diameter of 13 nm obtained by consecutive chemical reduction of precursor gold, bismuth and palladium salts in aqueous solution and immobilization on active carbon. High-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Auger electron spectroscopy experiments were performed to analyze the structure and to characterize the Pd–Bi–Au/C catalyst. The onion-like morphology is composed of high content of gold inner core, a Bi-rich intermediate layer and a Pd-rich external layer. The catalytic activity of the catalyst was subsequently investigated and they were found to be efficient catalysts for the aerobic liquid phase oxidation. The results showed that the catalytic activity of Pd–Bi–Au/C was higher than that of Pd–Au/C bimetallic catalyst, indicating that bismuth plays an important role in synergistic effect between gold and palladium.  相似文献   

18.
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 μm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 °C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 °C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 μm thick are porous and constitute the active anodic material.  相似文献   

19.
In this work three alloys, Fe74Nb6B20, Fe64Ni10Nb6B20 and Fe54Ni20Nb6B20, were obtained by mechanical alloying to analyze the influence of Ni content on Fe–Nb–B alloy formation. Structural analysis by X-ray diffraction (XRD) confirms that partial substitution of Fe by Ni favours the formation during milling of a more disordered structure. Furthermore, thermal stability study was performed by differential scanning calorimetry (DSC) because thermally induced structural changes can affect soft magnetic behaviour. After 40 h of milling time, all DSC curves show several exothermic effects on heating associated to structural relaxation and crystallization. All alloys present a crystallization process with associated activation energy values ranged between 238 and 265 kJ mol–1 related to the crystalline growth of the bcc-Fe rich phase. In alloys with Ni, a second crystallization process appears at temperatures over 500°C with activation energies 397 (10% Ni alloy) and 385 kJ mol–1 (20% Ni alloy) probably associated to the nucleation and crystalline growth of a new phase.  相似文献   

20.
Silica coating derived by sol–gel processing was deposited on an orthorhombic phase Ti–22Al–26Nb alloy by dip-coating technique. Isothermal oxidation at 800 and 900 °C and cyclic oxidation at 900 °C in static air of the coated and uncoated specimens were performed to investigate the effect of the silica coating on the oxidation behavior of the Ti–22Al–26Nb alloy by thermogravimetry, SEM and XRD. The average parabolic rate constants of the coated specimens were lower than those of uncoated ones. Additionally, the present film exhibited a beneficial effect on the cyclic oxidation resistance of the alloy in air. TiO2, Nb2TiO7 or AlNbO4 were the main phases formed on the alloy. The thin film could inhibit the growth of the oxides. The possible mechanism of the thin film on the oxidation behavior of the alloy was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号