首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of melatonin (MT) (N-acetyl-5-methoxytryptamine) and related indole compounds using standard capillary electrophoresis (CE) system with UV detection was investigated. Satisfactory separations of six analytes i.e. l-tryptophan (l-TRP), 5-methoxyindoleacetic acid (5-MIAA), 6-hydroxymelatonin (6-HMT), MT, serotonin (SER) and 5-methoxytryptamine (5-MTRA) were performed employing micellar electrokinetic chromatography (MEKC). The optimal background electrolytes (BGE) used for separations were 20mM tetraborate buffer (pH 9.2) and 20mM phosphate buffer (pH 3.3) when employing techniques with normal and reverse migration of micelles, respectively. Fifty millimolar sodium dodecyl sulfate (SDS) was employed as the pseudostationary phase and voltage of +/-20kV was used throughout the investigation. On-line preconcentration techniques, stacking and sweeping, were applied in order to overcome high detection limits that are a serious drawback of CE with UV detection. A comparison of used techniques, concerning enhancement factors and limits of detection (LOD), is presented. Obtained results show that the use of stacking with reverse migrating micelles (SRMM) as one of preconcentration techniques allows obtaining the lowest estimated LODs for MT at the level of 30ng/mL with injection time of 99s at 0.5psi. Estimated LODs for other analytes in these conditions were, 21, 26 and 100ng/mL for l-TRP, 5-MIAA and 6-HMT, respectively. Signals of 5-MTRA and SER obtainable only with 10s injection allowed reaching estimated LODs of 62.5 and 130ng/mL, respectively. Analysis of spiked, diluted human serum was carried out as a preliminary application illustration of developed procedure.  相似文献   

2.
Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was applied to separation and sensitive determination of red food colorants. Diode pumped frequency-doubled Nd:YAG laser (532 nm) was used as an excitation source in a laboratory-built CE-LIF system. For highly fluorescent erythrosine B (E127), an extrapolated limit of detection (LOD) of 0.4 ng mL(-1) (S/N=3) was achieved. Extrapolated LODs of other tested red additives, such as carmoisine, E122 (0.5 microg mL(-1)); amaranth, E123 (0.2 microg mL(-1)); ponceau 4R, E124 (0.3 microg mL(-1)) and red 2G, E128 (0.3 microg mL(-1)) were about one-order lower compared to results obtained with CE with absorbance detection in UV/vis (CE-UV/vis). The main advantages of using CE-LIF for analysis of food samples are high selectivity and minimization of matrix effect. To our knowledge, this is the first use of CE-LIF for determination of red food colorants.  相似文献   

3.
Li Q  Huie CW 《Electrophoresis》2006,27(21):4219-4229
A new sample pretreatment approach in CE was developed for concurrent biological sample clean-up and the concentration of hydrophobic compounds based on the combination of ACN deproteinization with salting-out extraction. Further enhancement in concentration detection sensitivity was achieved by coupling (offline) salting-out extraction with an online CE sample enrichment technique known as "ACN stacking". By optimizing the pH of salting-out extraction, a number of model compounds (hydrophobic porphyrins with clinical significances), i.e. zinc-protoporphyrin, protoporphyrin, and coproporphyrin (CP) III and I, can be efficiently extracted from the aqueous sample into a smaller volume organic solvent (ACN) phase and an enrichment factor of ca. 100 can be obtained. The pressure injection of the enriched ACN phase (containing ca.1% NaCl) into the CE capillary at 10% capillary volume resulted in additional concentration of the various hydrophobic porphyrins, allowing for a combined enrichment factor of ca.1000 to be obtained. Calibration curves obtained for the determination of a pair of positional isomers with significant diagnostic value, urinary CPIII and CPI, were found to be linear between 10-300 ng/mL (with R2 = 0.999), and LODs (absorbance detection at 400 nm) were ca. 0.8 ng/mL (1.1 nmol/L of CPIII or CPI). Based on a single salting-out extraction, intraday precisions (nine consecutive injections) for both CPIII and CPI (at spiked concentrations of 10-300 ng/mL into urine) in terms of migration time and peak area were found to be within the range of 0.2-0.5 and 0.8-2.9%, respectively.  相似文献   

4.
In this study, the suitability of solid‐phase extraction (SPE) coupled in‐line to CE with UV–Vis detection was evaluated for the preconcentration and separation of diluted solutions of five pharmaceuticals compounds: benzafibrate, piroxicam, diclofenac sodium, naproxen and clofibric acid. An SPE analyte concentrator containing Oasis® HLB sorbent was constructed without frits and placed near the inlet end of the separation capillary. Different parameters such as sample pH, composition and volume of the elution plug and sample loading time were studied in order to obtain the maximum preconcentration factors. The LODs reached for standard samples were in the range 0.06–0.5 ng/mL with good reproducibility, and the developed strategy provides sensitivity enhancement factors around 14 000‐fold in peak area and 5900‐fold in peak height compared with the normal hydrodynamic injection. Finally, river water samples fortified with the pharmaceutical compounds were analyzed by the developed in‐line SPE‐CE‐UV method in order to show the potential of the methodology for the analysis of environmental aquatic samples. For these samples, high values of relative recoveries, between 73–107% and 79–103% for two concentration levels, 5 and 25 ng/mL, respectively, were obtained and LODs ranged between 0.19 and 1 ng/mL.  相似文献   

5.
Anthracyclines are chemotherapeutic drugs that are widely used in the treatment of cancers such as lung and ovarian cancers. The simultaneous determination of the anthracyclines, daunorubicin, doxorubicin and epirubicin, was achieved using CE coupled to LIF, with an excitation and emission wavelength of 488 and 560 nm, respectively. Using a borate buffer (105 mM, pH 9.0) and 30% MeOH, a stable and reproducible separation of the three anthracyclines was obtained. The method developed was shown to be capable of monitoring the therapeutic concentrations (50-50 000 ng/mL) of anthracyclines. LODs of 10 ng/mL, calculated at an S/N = 3, were achieved. Using the CE method developed, the in vitro protein binding to plasma was measured by ultrafiltration, and from this investigation the estimated protein binding was determined to be in the range of 77-94%.  相似文献   

6.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

7.
Lin YH  Chiang JF  Lee MR  Lee RJ  Ko WK  Wu SM 《Electrophoresis》2008,29(11):2340-2347
A cation-selective exhaustive injection and sweeping micellar EKC (CSEI-Sweep-MEKC) was established to analyze morphine and its four metabolites, including codeine, normorphine (NM), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G). After SPE, the urine samples were analyzed by this CE method. The phosphate buffer (75 mM, pH 2.5) containing 30% methanol was first filled into an uncoated fused-silica capillary (40 cm, 50 microm id), then a high-conductivity buffer (120 mM phosphate, 10.3 kPa for 99.9 s) followed. The pretreated urine sample was loaded by electrokinetic injection (10 kV, 600 s). The stacking and separation were performed by using phosphate buffer (25 mM, pH 2.5) containing 22% methanol and 100 mM SDS at -20 kV, and detected at 200 nm. During method validation, calibration plots were linear (r > or = 0.998) over a range of 30-3000 ng/mL for morphine, NM, and codeine, 100-2000 ng/mL for M6G, and 80-3200 ng/mL for M3G. The LODs (S/N = 5, sampling 600 s at 10 kV) were 10 ng/mL for morphine, NM, and codeine, 35 ng/mL for M6G, and 25 ng/mL for M3G. This stacking CE method could increase 2500-fold sensitivity of codeine, when comparing with CZE. Five addicts' urine specimens were analyzed. Their results were compared with those of LC-MS-MS, and showed good coincidence. This method could be feasible for monitoring morphine and its metabolites in forensic interest and pharmacokinetic investigations.  相似文献   

8.
A simple and reliable CE method with direct UV detection has been developed to separate eight isomeric benzoic acids in atmospheric aerosols and vehicular emission without complex sample pretreatment. Optimal electrophoretic conditions, with migration times under 5 min, were obtained by using a 50 mM acetate buffer (pH 4.7) containing a dynamic surface coating EOTrol LN (0.005% w/v). The separations were carried out in a cathode to anode direction (-30 kV) allowing the low cathodal EOF ( approximately 1 x 10(-9) m(2)V(-1)s(-1)) to extend the effective separation by slowing the movement of the studied aromatic acids. Moreover, the sensitivity of the method at 200 nm was enhanced by using a field-amplified sample injection (FASI) with electrokinetic (EK) sample injection (-2 kV, 60 s). Prior to sample injection, a short water plug (3 s at 0.5 psi) was introduced. Under these conditions, the method was capable of detecting the analytes in deionized water with LODs (S/N = 3) as low as 0.1 microg/L for most of the studied acids. In the presence of 10 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 0.26 to 0.62 microg/L. The validation of the method has proven an excellent separation performance and accuracy for the determination of isomeric benzoic acids in the studied matrices.  相似文献   

9.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

10.
刘菁华  孙振中  黄雪玲  郭霞  孙建华 《色谱》2015,33(4):434-440
建立了养殖水体及沉积物中11种磺胺化合物的高效液相色谱-柱后衍生分析方法。养殖水体过滤后采用HLB固相萃取柱进行净化、富集;沉积物采用甲醇/EDTA-Mcllvaine缓冲液(1:1, v/v)提取,HLB固相萃取柱净化富集。经高效液相色谱分离,用荧光胺衍生试剂进行柱后衍生,荧光检测器检测。对柱后衍生系统参数进行了优化,确定了荧光胺溶液的浓度、流速和反应温度分别为0.2 g/L、0.15 mL/min和50 ℃,磺胺化合物在0.01~1.0 mg/L范围内线性显著,其相关系数r2值大于0.99995。11种磺胺类药物在养殖水体和沉积物中的加标回收率分别为79.3%~100.7%和74.6%~95.3%,相对标准偏差为2.2%~11.0%和2.6%~10.3%,检出限(LOD, S/N=3)为0.9~5.5 ng/L和0.3~1.3 μg/kg,定量限(LOQ, S/N=10)为3.0~18.1 ng/L和1.0~4.4 μg/kg。该法可应用于养殖环境中磺胺类药物的定性定量检测,具有较好的实用性。  相似文献   

11.
Ionic liquid-based dispersive liquid-liquid microextraction was developed for the extraction and preconcentration of aromatic amine from environmental water. A suitable mixture of extraction solvent (100 μL, 1-butyl-3-methylimidazolium hexafluorophoshate) and dispersive solvent (750 μL, methanol) were injected into the aqueous samples (10.00 mL), forming a cloudy solution. After centrifuging, enriched analytes in the sediment phase were determined by HPLC-UV. The effect of various factors, such as the extraction and dispersive solvent, sample pH, extraction time and salt effect were investigated. Under optimum conditions, enrichment factors for 2-anilinoethanol, o-chloroaniline and 4-bromo-N,N-dimethylaniline were above 50 and the limits of detection (LODs) were 0.023, 0.015 and 0.026 ng/mL, respectively. Their linear ranges were 0.8-400 ng/mL for 2-anilinoethanol, 0.5-200 ng/mL for o-chloroaniline and 0.4-200 ng/mL for 4-bromo-N,N-dimethylaniline, respectively. Relative standard deviations (RSDs) were below 5.0%. The relative recoveries from samples of environmental water were in the range of 82.0-94.0%. Compared with other methods, dispersive liquid-liquid microextraction is simple, rapid, sensitive and economical.  相似文献   

12.
A simple, rapid, highly efficient, and reliable sample preparation method has been developed for the extraction and analysis of triazole pesticides from cucumber, lettuce, bell pepper, cabbage, and tomato samples. This new sorbent in the hollow‐fiber solid‐phase microextraction method is based on the synthesis of polyethylene glycol‐polyethylene glycol grafted flower‐like cupric oxide nanoparticles using sol–gel technology. Afterward, the analytes were analyzed by high‐performance liquid chromatography with ultraviolet detection. The main parameters that affect microextraction efficiency were evaluated and optimized. This method has afforded good linearity ranges (0.5–50 000 ng/mL for hexaconazol, 0.012–50 000 ng/mL for penconazol, and 0.02–50 000 ng/mL for diniconazol), adequate precision (2.9–6.17%, n = 3), batch‐to‐batch reproducibility (4.33–8.12%), and low instrumental LODs between 0.003 and 0.097 ng/mL (n = 8). Recoveries and enrichment factors were 85.46–97.47 and 751–1312%, respectively.  相似文献   

13.
A capillary electrophoretic (CE) method has been developed for the determination of ivermectin (CAS 70288-86-7), a new generation drug with antiparasitic activity, in pig and horse plasma. The method was statistically validated for its linearity, accuracy, precision and selectivity. The linear range was from 1 to 30 ng mL(-1) with correlation coefficients greater than 0.999. The limit of detection was 0.3 ng mL(-1), while the quantitative limit was 1 ng mL(-1), using a 0.5 mL sample size. The validated procedure was used to determination of pharmacokinetic parameters of ivermectin after ingestion of 0.1 mg for pigs and 0.2 mg dose per kg body weight for horses, respectively. Studies were performed on a group of eight pigs and six horses. There were no significant differences between pigs and horses in any of the estimated pharmacokinetic parameters.  相似文献   

14.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

15.
A CE instrument coupled with chemiluminescence (CL) detection was designed for the determination of promethazine hydrochloride (PTH) and promazine hydrochloride (PMH) in real samples. An important enhancement of the CL emission of luminol with potassium ferricyanide was observed in the presence of these phenothiazines; so this system was selected for their detection after CE separation. Parameters affecting the electrophoretic separation were optimized in a univariate way, while those affecting CL detection were optimized by means of a multivariate approach based on the use of experimental designs. Chemometrics was also employed for the study of the robustness of the factors influencing the postcolumn CL detection. The method allows the separation of the phenothiazines in less than 4 min, achieving LODs of 80 ng/mL for PMH and 334 ng/mL for PTH, using sample injection by gravity. Electrokinetic injection was used to obtain lower LODs for the determination of the compounds in biological samples. The applicability of the CE-CL method was illustrated in the determination of PTH in pharmaceutical formulations and in the analysis of PMH in human urine, using a previous SPE procedure, achieving an LOD of 1 ng/mL and recoveries higher than 85%.  相似文献   

16.
Wang SP  Huang SP 《Electrophoresis》2001,22(11):2222-2230
Stilbenes, fluorescence whitening agents (FWAs), are usually added to cleaning agents in household and in industry. Capillary electrophoresis (CE) was often applied to separate various compounds simultaneously for its multinomial advantages. In this paper, we established analytical methods of six diaminostilbenes with CE and ion-pair chromatography (IPC). The optimum mobile phase for IPC was 11.78 mM tetrabutylammonium hydrogen sulfate (TBA) aqueous and acetonitrile. An IPC method has been developed for simple and direct separation for diaminostilbenes, anionic substances, with TBA as ion-pair reagent. Satisfactory linear ranges (7.0 x 10(-3) approximately 3.0 x 10 microg/mL), correlation coefficients (0.9992-0.9999), and detection limits (6-13 ng/mL) were obtained. Separations were also performed by capillary zone electrophoresis (CZE) using a buffer consisting of Tris (pH 10.1), n-tetradecyltrimethylammonium bromide (TTAB) and acetonitrile. A linear range of 5.0 x 10(-1) - 4.0 x 10 microg/mL, correlation coefficients between 0.9975 and 0.9998, and detection limits between 337 and 446 ng/mL were obtained. In particular, the separation of a pair of similar compounds (mass difference of 2) was achieved by addition of TTAB. The optimum analytical methods of CE and high-performance liquid chromatography (HPLC) were applied to commercial household with direct analysis and standard addition. No significant bias were shown between them by t-test at 95% confidence level.  相似文献   

17.
This paper compares the advantages and disadvantages of two different configurations for the extraction of triazines from water samples: (1) on-fibre solid-phase microextraction (SPME) coupled to conventional liquid chromatography (LC); and (2) in-tube SPME coupled to capillary LC. In-tube SPME has been effected either with a packed column or with an open capillary column. A critical evaluation of the main parameters affecting the performance of each method has been carried out in order to select the most suitable approach according to the requirements of the analysis. In the on-fibre SPME configuration the fibre coating was polydimethylsiloxane (PDMS)-divinylbenzene (DVB). The limits of detection (LODs) obtained with this approach under the optimized extraction and desorption conditions were between 25 and 125 microg/L. The in-tube SPME approach with a C18 packed column (35 mm x 0.5 mm I.D., 5 microm particle size) connected to a switching micro-valve provided the best sensitivity; under such configuration the LODs were between 0.025 and 0.5 microg/L. The in-tube SPME approach with an open capillary column coated with PDMS (30 cm x 0.25 mm I.D., 0.25 microm of thickness coating) connected to the injection valve provided LODs between 0.1 and 0.5 microg/L. In all configurations UV detection at 230 nm was used. Atrazine, simazine, propazine, ametryn, prometryn and terbutryn were selected as model compounds.  相似文献   

18.
Methods for the total content and individual determination of linear alkylbenzene sulfonates (LAS) in water samples based on the use of a lab-on-valve (LOV) module alone or coupled to CE equipment, respectively, have been developed. The total content of LAS has been determined by intrinsic absorption measurements (DA method) and after reaction with a methyl orange-cetylpyridine chloride mixture (MO method) with detection limits (LODs) of 21 ng/L and 15 microg/L, respectively, quantification limits (LOQs) of 70 ng/L, 50 microg/L, and development times of 100 and 124 s, respectively. The method for individual separation-quantification of LAS at very low concentration is based on automatic SPE preconcentration in the LOV module coupled on-line with the CE equipment. The LODs and LOQs thus obtained range between 1-21 and 4-70 ng/L, respectively, with linear dynamic ranges from the LOQ to 10 microg/L. Preconcentration factors of 10,000 and high efficiency to eliminate interferents by SPE enable application of the method to treated effluent, waste, surface and sea waters.  相似文献   

19.
In this work, an LED‐induced‐chemiluminescence (LED‐CL) system was developed to extend the application of CL detection in CE. In the LED‐CL, the analyte photooxidizes luminol under the irradiation of LEDs and generates CL. Taking the advantage of the small size nature of LEDs, the constructed photoreactor is greatly miniaturized, and especially suitable as a CE detector. The feasibility of the proposed detector was evaluated by detection of riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) after CE separation. Under the optimized conditions, the LODs for RF, FMN and FAD were 0.007, 0.02 and 0.1 μg/mL, respectively, better than those by UV detection. The RSDs were 3.4, 3.6 and 4.1% for 0.5 μg/mL RF, 2 μg/mL FMN and 5 μg/mL FAD, respectively. The LED‐CL detector features low cost, miniaturization, fast response, high sensitivity and good reproducibility.  相似文献   

20.
Fluoroquinolones are a group of synthetic antibiotics with a broad activity spectrum against mycoplasma, Gram‐positive, and Gram‐negative bacteria. Due to the extensive use of fluoroquinolones in farming and veterinary science, there is a constant need in the analytical methods able to efficiently monitor their residues in food products of animal origin, regulated by Commission Regulation (European Union) no. 37/2010. Herein, field‐enhanced sample injection for sample stacking prior the CZE separation was developed inside a bubble cell capillary for highly sensitive detection of five typical fluoroquinolones in bovine milk. Ethylenediamine was proposed as the main component of BGE for the antibiotics separation. The effect of BGE composition, injection parameters, and water plug length on the field‐enhanced sample injection‐based CE with UV detection was investigated. Under the optimized conditions, described field‐enhanced sample injection‐based CE‐UV analysis of fluoroquinolones provides LODs varying from 0.4 to 1.3 ng/mL. These LOD values are much lower (from 460 to 1500 times) than those obtained by a conventional CE in a standard capillary without bubble cell. The developed method was finally applied for the analysis of fluoroquinolones in low‐fat milk from a Swiss supermarket. Sample recovery values from 93.6 to 106.0% for different fluoroquinolones, and LODs from 0.7 to 2.5 μg/kg, were achieved. Moreover, the proposed ethylenediamine‐based BGE as volatile and compatible with MS system, enabled the coupling of the field‐enhanced sample injection‐based CE with a recently introduced electrostatic spray ionization MS via an iontophoretic fraction collection interface for qualitative fluoroquinolones identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号