首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An asymptotic formula for the minimum possible number of even p x q submatrices of an m x n 0-1 matrix A is obtained. It is shown that if Ais considered random and pq is even, then the distributionof the number of the even p x q submatricesof A is highly skewed to the right, the left endpointof the distribution being very close to its mean, while its rightendpoint is twice the mean. A relation to Turán numbersis indicated.  相似文献   

2.
It is shown that the size of any C4k+2-free subgraph of the hypercube Qn, k?3, is o(e(Qn)).  相似文献   

3.
Let be disjoint sets of sizes and . Let be a family of quadruples, having elements from and from , such that any subset with and contains one of the quadruples. We prove that the smallest size of is as . We also solve asymptotically a more general two‐partite Turán problem for quadruples.  相似文献   

4.
Estimating Turán densities of hypergraphs is believed to be one of the most challenging problems in extremal set theory. The concept of ‘jump’ concerns the distribution of Turán densities. A number α∈[0,1) is a jump for r-uniform graphs if there exists a constant c>0 such that for any family F of r-uniform graphs, if the Turán density of F is greater than α, then the Turán density of F is at least α+c. A fundamental result in extremal graph theory due to Erd?s and Stone implies that every number in [0,1) is a jump for graphs. Erd?s also showed that every number in [0,r!/rr) is a jump for r-uniform hypergraphs. Furthermore, Frankl and Rödl showed the existence of non-jumps for hypergraphs. Recently, more non-jumps were found in [r!/rr,1) for r-uniform hypergraphs. But there are still a lot of unknowns regarding jumps for hypergraphs. In this paper, we propose a new but related concept-strong-jump and describe several sequences of non-strong-jumps. It might help us to understand the distribution of Turán densities for hypergraphs better by finding more non-strong-jumps.  相似文献   

5.
A code c is a covering code of X with radius r if every element of X is within Hamming distance r from at least one codeword from c. The minimum size of such a c is denoted by c r(X). Answering a question of Hämäläinen et al. [10], we show further connections between Turán theory and constant weight covering codes. Our main tool is the theory of supersaturated hypergraphs. In particular, for n > n 0(r) we give the exact minimum number of Hamming balls of radius r required to cover a Hamming ball of radius r + 2 in {0, 1}n. We prove that c r(B n(0, r + 2)) = 1 i r + 1 ( (n + i – 1) / (r + 1) 2) + n / (r + 1) and that the centers of the covering balls B(x, r) can be obtained by taking all pairs in the parts of an (r + 1)-partition of the n-set and by taking the singletons in one of the parts.  相似文献   

6.
Let fr(n) be the maximum number of edges in an r-uniform hypergraph on n vertices that does not contain four distinct edges A, B, C, D with AB=CD and AB=CD=∅. This problem was stated by Erd?s [P. Erd?s, Problems and results in combinatorial analysis, Congr. Numer. 19 (1977) 3-12]. It can be viewed as a generalization of the Turán problem for the 4-cycle to hypergraphs.Let . Füredi [Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, Combinatorica 4 (1984) 161-168] observed that ?r?1 and conjectured that this is equality for every r?3. The best known upper bound ?r?3 was proved by Mubayi and Verstraëte [D. Mubayi, J. Verstraëte, A hypergraph extension of the bipartite Turán problem, J. Combin. Theory Ser. A 106 (2004) 237-253]. Here we improve this bound. Namely, we show that for every r?3, and ?3?13/9. In particular, it follows that ?r→1 as r→∞.  相似文献   

7.
For graphs H,G a classical problem in extremal graph theory asks what proportion of the edges of H a subgraph may contain without containing a copy of G. We prove some new results in the case where H is a hypercube. We use a supersaturation technique of Erd?s and Simonivits to give a characterization of a set of graphs such that asymptotically the answer is the same when G is a member of this set and when G is a hypercube of some fixed dimension. We apply these results to a specific set of subgraphs of the hypercube called Fibonacci cubes. Additionally, we use a coloring argument to prove new asymptotic bounds on this problem for a different set of graphs. Finally we prove a new asymptotic bound for the case where G is the cube of dimension 3.  相似文献   

8.
Let Qn be the n-dimensional hypercube: the graph with vertex set n{0,1} and edges between vertices that differ in exactly one coordinate. For 1?d?n and Fd{0,1} we say that Sn{0,1} is F-free if every embedding satisfies i(F)?S. We consider the question of how large Sn{0,1} can be if it is F-free. In particular we generalise the main prior result in this area, for F=2{0,1}, due to E.A. Kostochka and prove a local stability result for the structure of near-extremal sets.We also show that the density required to guarantee an embedded copy of at least one of a family of forbidden configurations may be significantly lower than that required to ensure an embedded copy of any individual member of the family.Finally we show that any subset of the n-dimensional hypercube of positive density will contain exponentially many points from some embedded d-dimensional subcube if n is sufficiently large.  相似文献   

9.
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1-9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7nO(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5nO(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones.  相似文献   

10.
Let (n) denote the number of prime divisors of n and let (n) denote the number of prime power divisors of n. We obtain upper bounds for the lengths of the longest intervals below x where (n), respectively (n), remains constant. Similarly we consider the corresponding problems where the numbers (n), respectively (n), are required to be all different on an interval. We show that the number of solutions g(n) to the equation m+(m)=n is an unbounded function of n, thus answering a question posed in an earlier paper in this series. A principal tool is a Turán-Kubilius type inequality for additive functions on arithmetic progressions with a large modulus.  相似文献   

11.
12.
13.
A classical result in extremal graph theory is Mantel's Theorem, which states that every maximum triangle‐free subgraph of Kn is bipartite. A sparse version of Mantel's Theorem is that, for sufficiently large p, every maximum triangle‐free subgraph of G(n, p) is w.h.p. bipartite. Recently, DeMarco and Kahn proved this for for some constant K, and apart from the value of the constant this bound is best possible. We study an extremal problem of this type in random hypergraphs. Denote by F5, which is sometimes called the generalized triangle, the 3‐uniform hypergraph with vertex set and edge set . One of the first results in extremal hypergraph theory is by Frankl and Füredi, who proved that the maximum 3‐uniform hypergraph on n vertices containing no copy of F5 is tripartite for n > 3000. A natural question is for what p is every maximum F5‐free subhypergraph of w.h.p. tripartite. We show this holds for for some constant K and does not hold for . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 48, 641–654, 2016  相似文献   

14.
15.
A method for evaluating Hilbert transforms, by means of Turán quadrature rules with generalized Gegenbauer weights, is presented. The main feature of these integration formulas is the independence of the nodes of their multiplicity and thus of the precision degree. The error is analyzed both from a real and a complex perspective; in this context a new representation of the remainder term of the quadrature rules with multiple nodes for the evaluation of Hilbert transforms, valid not only for the particular class of weight functions here considered, is presented. A few numerical examples are provided.Work sponsored by Ministero della Ricerca Scientifica e Tecnologia, Italy.  相似文献   

16.
A 4-graph is odd if its vertex set can be partitioned into two sets so that every edge intersects both parts in an odd number of points. Let
  相似文献   

17.
The stability method is very useful for obtaining exact solutions of many extremal graph problems. Its key step is to establish the stability property which, roughly speaking, states that any two almost optimal graphs of the same order n can be made isomorphic by changing o(n2) edges.Here we show how the recently developed theory of graph limits can be used to give an analytic approach to stability. As an application, we present a new proof of the Erd?s-Simonovits stability theorem.Also, we investigate various properties of the edit distance. In particular, we show that the combinatorial and fractional versions are within a constant factor from each other, thus answering a question of Goldreich, Krivelevich, Newman, and Rozenberg.  相似文献   

18.
We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a?∑fkk(a)xk, a?∑fkΓ(a+k)xk and a?∑fkxk/k(a). The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexity results for the same function recently proved by Baricz. Besides, we establish a reverse inequality which complements naturally the inequality of Barnard, Gordy and Richards. Similar results are established for the Gauss and the generalized hypergeometric functions. A conjecture about monotonicity of a quotient of products of confluent hypergeometric functions is made.  相似文献   

19.
An asymmetric covering is a collection of special subsets S of an n‐set such that every subset T of the n‐set is contained in at least one special S with . In this paper we compute the smallest size of any for We also investigate “continuous” and “banded” versions of the problem. The latter involves the classical covering numbers , and we determine the following new values: , , , , and . We also find the number of non‐isomorphic minimal covering designs in several cases. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 218–228, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10022  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号