首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

2.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

3.
We point out a countable set of pairwise nonisomorphic Cayley graphs of the group ℤ4 that are limit for finite minimal vertex-primitive graphs admitting a vertex-primitive automorphism group containing a regular Abelian normal subgroup. Supported by RFBR grant No. 06-01-00378. __________ Translated from Algebra i Logika, Vol. 47, No. 2, pp. 203–214, March–April, 2008.  相似文献   

4.
耿显亚  赵红锦  徐李立 《数学杂志》2017,37(6):1111-1117
本文定义SkG)为G中所有点对之间距离的k次方之和.利用顶点划分的方法得到了直径为dn顶点连通二部图SkG)的下界,并确定了达到下界所对应的的极图.  相似文献   

5.
Tongsuo Wu  Dancheng Lu   《Discrete Mathematics》2008,308(22):5122-5135
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ(S). We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ(S) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.  相似文献   

6.
On Cubic Graphs Admitting an Edge-Transitive Solvable Group   总被引:2,自引:2,他引:0  
Using covering graph techniques, a structural result about connected cubic simple graphs admitting an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph can be obtained from either the 3-dipole Dip3 or the complete graph K 4, by a sequence of elementary-abelian covers. Another consequence of the main structural result is that the action of an arc-transitive solvable group on a connected cubic simple graph is at most 3-arc-transitive. As an application, a new infinite family of semisymmetric cubic graphs, arising as regular elementary abelian covering projections of K 3,3, is constructed.  相似文献   

7.
A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.  相似文献   

8.
Counting labelled planar graphs, and typical properties of random labelled planar graphs, have received much attention recently. We start the process here of extending these investigations to graphs embeddable on any fixed surface S. In particular we show that the labelled graphs embeddable on S have the same growth constant as for planar graphs, and the same holds for unlabelled graphs. Also, if we pick a graph uniformly at random from the graphs embeddable on S which have vertex set {1,…,n}, then with probability tending to 1 as n→∞, this random graph either is connected or consists of one giant component together with a few nodes in small planar components.  相似文献   

9.
Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 1. Strongly equistable graphs are graphs such that for every and every nonempty subset T of vertices that is not a maximal stable set, there exist positive vertex weights assigning weight 1 to every maximal stable set such that the total weight of T does not equal c . General partition graphs are the intersection graphs of set systems over a finite ground set U such that every maximal stable set of the graph corresponds to a partition of U . General partition graphs are exactly the graphs every edge of which is contained in a strong clique. In 1994, Mahadev, Peled, and Sun proved that every strongly equistable graph is equistable, and conjectured that the converse holds as well. In 2009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An “intermediate” conjecture, posed by Miklavi? and Milani? in 2011, states that every equistable graph has a strong clique. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle‐free graphs. We also show that not all strongly equistable graphs are general partition.  相似文献   

10.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
Suppose G is a graph embedded in Sg with width (also known as edge width) at least 264(2g−1). If PV(G) is such that the distance between any two vertices in P is at least 16, then any 5‐coloring of P extends to a 5‐coloring of all of G. We present similar extension theorems for 6‐ and 7‐chromatic toroidal graphs, for 3‐colorable large‐width graphs embedded on Sg with every face even‐sided, and for 4‐colorable large‐width Eulerian triangulations. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 105–116, 2001  相似文献   

12.
It is a difficult problem in general to decide whether a Cayley graph Cay(G; S) is connected where G is an arbitrary finite group and S a subset of G. For example, testing primitivity of an element in a finite field is a special case of this problem but notoriously hard. In this paper, it is shown that if a Cayley graph Cay(G; S) is known to be connected then its fault tolerance can be determined in polynomial time in |S|log(|G|). This is accomplished by establishing a new structural result for Cayley graphs. This result also yields a simple proof of optimal fault tolerance for an infinite class of Cayley graphs, namely exchange graphs. We also use the proof technique for our structural result to give a new proof of a known result on quasiminimal graphs. Received March 10, 2006  相似文献   

13.
A regular and edge-transitive graph that is not vertex-transitive is said to be semisymmetric. Every semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group acting transitively on each of these two parts. A semisymmetric graph is called biprimitive, if its automorphism group acts primitively on each part. In this article, a classification of biprimitive semisymmetric graphs arising from the action of the group PSL(2, p), p ≡ ±1 (mod 8) a prime, acting on cosets of S4 is given, resulting in several new infinite families of biprimitive semisymmetric graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 217–228, 1999  相似文献   

14.
We prove that any circulant graph of order n with connection set S such that n and the order of ?(S), the subgroup of ? that fixes S set‐wise, are relatively prime, is also a Cayley graph on some noncyclic group, and shows that the converse does not hold in general. In the special case of normal circulants whose order is not divisible by 4, we classify all such graphs that are also Cayley graphs of a noncyclic group, and show that the noncyclic group must be metacyclic, generated by two cyclic groups whose orders are relatively prime. We construct an infinite family of normal circulants whose order is divisible by 4 that are also normal Cayley graphs on dihedral and noncyclic abelian groups. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

15.
In this article we study the product action of the direct product of automorphism groups of graphs. We generalize the results of Watkins [J. Combin Theory 11 (1971), 95–104], Nowitz and Watkins [Monatsh. Math. 76 (1972), 168–171] and W. Imrich [Israel J. Math. 11 (1972), 258–264], and we show that except for an infinite family of groups Sn × Sn, n≥2 and three other groups D4 × S2, D4 × D4 and S4 × S2 × S2, the direct product of automorphism groups of two graphs is itself the automorphism group of a graph. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 26–36, 2009  相似文献   

16.
In this paper we introduce a new hamiltonian-like property of graphs. A graph G is said to be cyclable if for each orientation D of G there is a set S of vertices such that reversing all the arcs of D with one end in S results in a hamiltonian digraph. We characterize cyclable complete multipartite graphs and prove that the fourth power of any connected graph G with at least five vertices is cyclable. If, moreover, G is two-connected then its cube is cyclable. These results are shown to be best possible in a sense. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 13–30, 1998  相似文献   

17.
18.
In this paper, we study the critical point‐arboricity graphs. We prove two lower bounds for the number of edges of k‐critical point‐arboricity graphs. A theorem of Kronk is extended by proving that the point‐arboricity of a graph G embedded on a surface S with Euler genus g = 2, 5, 6 or g ≥ 10 is at most with equality holding iff G contains either K2k?1 or K2k?4 + C5 as a subgraph. It is also proved that locally planar graphs have point‐arboricity ≤ 3 and that triangle‐free locally planar‐graphs have point‐arboricity ≤ 2. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 50–61, 2002  相似文献   

19.
In this paper, we investigate graphs for which the corresponding Laplacian matrix has distinct integer eigenvalues. We define the set Si,n to be the set of all integers from 0 to n, excluding i. If there exists a graph whose Laplacian matrix has this set as its eigenvalues, we say that this set is Laplacian realizable. We investigate the sets Si,n that are Laplacian realizable, and the structures of the graphs whose Laplacian matrix has such a set as its eigenvalues. We characterize those i < n such that Si,n is Laplacian realizable, and show that for certain values of i, the set Si,n is realized by a unique graph. Finally, we conjecture that Sn,n is not Laplacian realizable for n ≥ 2 and show that the conjecture holds for certain values of n. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

20.
A Cayley graph F = Cay(G, S) of a group G with respect to S is called a circulant digraph of order pk if G is a cyclic group of the same order. Investigated in this paper are the normality conditions for arc-transitive circulant (di)graphs of order p^2 and the classification of all such graphs. It is proved that any connected arc-transitive circulant digraph of order p^2 is, up to a graph isomorphism, either Kp2, G(p^2,r), or G(p,r)[pK1], where r|p- 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号