首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly sensitive and fast-response biosensor based on cupric hydroxide/oxide (Cu(OH)2/CuO) nanotube arrays (CNA) was successfully fabricated in this work. CNAs were prepared on copper electrode surface by simply immersing copper electrode in an aqueous solution of NaOH and (NH4)2S2O8. The morphology and the composition of the CNAs were characterized by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD), respectively. The electrocatalytic activity of the CNA modified copper electrodes (CNA/Cu) towards glucose oxidation was investigated by cyclic voltammetry and amperometry. The CNA/Cu showed good non-enzymatic electrocatalytic responses to glucose in alkaline media and can be used for the development of enzyme-free glucose sensors.  相似文献   

2.
A non-enzymatic amperometric glucose is reported that is based on an glassy carbon electrode modified with a Cu-CuO nanowire (NW) composite. The morphology and the composition of the nanowire were characterized by scanning electron microscopy and X-ray diffraction, respectively. The modified electrode efficiently catalyzes the oxidation of glucose at less-positive potential (0.30 V) in 0.10 M NaOH solution in the absence of any enzymes or redox mediators. The sensor was successfully used for the amperometric sensing of glucose. Linear response was obtained over the concentration range from 0.1 to 12 mM. The common interfering agents ascorbic acid and uric acid do not interfere with the determination of glucose. The modified electrode features high sensitivity, low working potential, excellent stability, and fast amperometric sensing of glucose. Thus it is promising for the future development of non-enzymatic glucose sensors.  相似文献   

3.
We described the preparation of copper oxide composite nanofibers doped with carbon nanotubes (CuO/C-NFs) or nickel oxide(CuO/NiO-NFs) by electrospinning for direct glucose determination. The interest in exploring practical CuO/C-NFs and CuO/NiO-NFs electrode materials for sensor application was fascinated by the possibility of promoting electron transfer for kinetically unfavorable glucose oxidation reactions at a lower overpotential and thus improving the selectivity of the electrode for glucose in electroanalysis. The morphologies of CuO/C-NFs and CuO/NiO-NFs were characterized by scanning electron microscopy(SEM) and X-ray powder diffraction(XRD). The electrocatalytic performances of glucose were evaluated in detail by cyclic voltammetry(CV) and chronoamperometry. Facile charge transport, enhanced current response(at a lower overpotential of +0.35 V), improved stability and selectivity, as well as excellent resistance towards electrode fouling were observed at CuO/ C-NFs electrode in direct glucose electroanalysis. These merits are attributed to the highly porous three-dimensional network film structure of CuO/C-NFs electrode materials and the potential synergic catalytic effect of CuO and carbon nanotubes in composite nanofibers. This study may provide a new insight into metal oxide-based composite nanofibers obtained via electrospinning for fabricating novel and high performance sensors and devices.  相似文献   

4.
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 microm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1)(or k(mt) > 1.0 cm s(-1)) are observed at 50 microm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 microm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 microm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.  相似文献   

5.
Well-aligned Cu(OH)2 nanoribbon and CuO nanorod arrays have been prepared on copper substrates by liquid-solid reactions. The effects of temperature, reaction time, solvent, and pH value on the morphology and composition of the products are systematically studied. Using the Cu(OH)2 nanoribbons array as a reactive and sacrificial template, we have successfully synthesized Cu2O, Cu9S8, and Cu nanoribbon/ nanowire arrays, demonstrating the versatility of the template. The extensive series of copper-based one-dimensional nanomaterials have been fully characterized by various structural, microscopic, and spectroscopic techniques. Moreover, the Cu nanowires are demonstrated to be an excellent surface-enhanced Raman scattering substrate with a sensitivity over an order of magnitude higher than that of a common roughened copper electrode.  相似文献   

6.
In this work, the effect of Cu nanowire morphology on the selective electrocatalytic reduction of CO2 is presented. Cu nanowire arrays were prepared through a two‐step synthesis of Cu(OH)2 and CuO nanowire arrays on Cu foil substrates and a subsequent electrochemical reduction of the CuO nanowire arrays to Cu nanowire arrays. By this simple synthesis method, Cu nanowire array electrodes with different length and density were able to be controllably synthesized. We show that the selectivity for hydrocarbons (ethylene, n‐propanol, ethane, and ethanol) on Cu nanowire array electrodes at a fixed potential can be tuned by systematically altering the Cu nanowire length and density. The nanowire morphology effect is linked to the increased local pH in the Cu nanowire arrays and a reaction scheme detailing the local pH‐induced formation of C2 products is also presented by a preferred CO dimerization pathway.  相似文献   

7.
Enzyme-functionalized gold nanowires for the fabrication of biosensors   总被引:3,自引:0,他引:3  
Gold nanowires were prepared by an electrodeposition strategy using nanopore polycarbonate (PC) membrane, with the average diameter of the nanowires about 250 nm and length about 10 microm. The nanowires prepared were dispersed into chitosan (CHIT) solution and stably immobilized onto glassy carbon electrode (GCE) surface. The electrochemical behavior of gold nanowire modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)) were investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. Moreover, the good biocompatibility of nanometer-sized gold, the vast surface area of the nanowire-structure make it ideal for adsorption of enzymes for the fabrication of biosensors. Glucose oxidase was adsorbed onto the nanowire surface to fabricate glucose biosensor as an application example. The detection of glucose was performed in phosphate buffer (pH 6.98) at -0.2 V. The resulting glucose biosensor exhibited sensitive response, with a short response time (<8 s), a linear range of 10(-5)-2 x 10(-2) M and detection limit of 5 x 10(-6) M.  相似文献   

8.
Flower-like CuO hierarchical nanostructures were synthesized on copper foil substrate through a simple wet chemical route in alkaline media at room temperature. SEM images collected at different reaction times revealed the transformation of initially formed Cu(OH)2 nanowires to flower-like CuO nanostructures. The hierarchical structure of the as-prepared CuO showed high electrocatalytic activity towards the oxidation of glucose making it a promising electrode material for the development of non-enzymatic glucose sensor. The amperometric sensor exhibited a wide linear response to glucose ranging from 4.5 × 10?5 to 1.3 × 10?3 mol L?1 (R 2 = 0.99317) at fixed potential of 0.3 V. The detection limit was 6.9 × 10?6 mol L?1 (LOD = 3σ/s) with a sensitivity of 1.71 μA μmol?1 cm?2. Moreover, the developed sensor offers a fast amperometric response, good selectivity and stability.  相似文献   

9.
We report on the sensitive determination of glucose using a glassy carbon electrode modified with CuO nanowires and a Nafion film. The structure and morphology of CuO nanowires were established by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the modified electrode was investigated by cyclic voltammetry and chronoamperometry. Compared to a bare glassy carbon electrode, a substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new glucose sensor displays two useful linear ranges of response towards glucose, is not affected by commonly interfering species, and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose. Additional features include high electrocatalytic activity, high sensitivity, excellent selectivity, and good stability.
We present an enzyme-free glucose sensor using a glassy carbon electrode modified with CuO wires and a Nafion film. A substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new sensor displays two useful linear ranges of response towards glucose and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose.  相似文献   

10.
This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.  相似文献   

11.
The rapid development of industrialization has resulted in severe environmental problems. A comprehensive assessment of air quality is urgently required all around the world. Among various technologies used in gas molecule detection, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectroscopy (MS), electrochemical sensors, and metal oxide semiconductor (MOS) gas sensors, MOS gas sensors possess the advantages of small dimension, low power consumption, high sensitivity, low production cost, and excellent silicon chip compatibility. MOS sensors hold great promise for future Internet of Things (IoT) sensors, which will have a profound impact on indoor and outdoor air quality monitoring. The development of nanotechnology has significantly enhanced the development of MOS gas sensors. Among various nanostructures like nanoparticles, nanosheets and nanowires, the emergence of quasi-one-dimensional (q1D) nanowires/nanorods/nanofibers, with unique q1D geometry (facilitating fast carrier transport) and large surface-to-volume ratio, potentially act as ideal sensing channels for MOS sensors with extremely small dimension, and good stability and sensitivity. These structures have thus been the focus of extensive research. Among the various MOS nanomaterials available, tungsten oxide (WO3-x, 0 ≤ x < 1) nanowires feature the characteristic properties (multiple oxidation states, rich substoichiometric oxides with distinct properties, photo/electrochromism, (photo)catalytic properties, etc.), and unique q1D geometry (single-crystalline pathway for fast carrier transport, large surface-to-volume ratio, etc.). WO3-x nanowires have broad applications in smart windows, energy conversation & storage, and gas sensing devices, and have thus become a focus of attention. In this paper, the fundamental properties of tungsten oxide, synthesis methods and growth mechanism of tungsten oxide nanowires are reviewed. Among various (vapor-liquid-solid (VLS), vapor-solid (VS) and thermal oxidation) growth methods, the thermal oxidation method enables an in situ integration of WO3-x nanowires on predefined electrodes (so-called bridged nanowire devices) via the oxidation of lithographically patterned W film at relatively low growth temperature (~500 ℃) because of interfacial strain, defects and oxygen on the surface of the W film. The novel bridged nanowire-based sensor devices outperform traditional lateral nanowire devices in terms of larger exposure area, low power consumption via self-heating, and greater convenience in device processing. Recent progress in bridged WO3-x nanowire devices and sensitive NOx molecule detection under low power consumption have also been reviewed. Power consumption of as low as a few milliwatts was achieved, and the detection limit of NO2 was reduced to 0.3 ppb (1 ppb = 1 × 10-9, volume fraction). In situ formed bridged WO3-x nanowire devices potentially satisfy the strict requirements of IoT sensors (small dimension, low power consumption, high integration, low cost, high sensitivity, and selectivity), and hold great promises for future IoT sensors.  相似文献   

12.
Novel CuO thin films composed of porous nanosheets were in situ formed on indium tin oxide (ITO) by a simple, low temperature solution method, and used as working electrodes to construct nonenzymatic glucose sensor after calcinations. Cyclic voltammetry revealed that the CuO/ITO electrode calcinated at 200 °C exhibited better electrocatalytic activity for glucose. For the amperometric glucose detection, such prepared electrode showed low operating potential of 0.35 V and high sensitivity of 2272.64 μA mM?1 cm?2. Moreover, the CuO/ITO electrode also showed good stability, reproducibility and high anti‐interference ability. Thus, it is a promising material for the development of non‐enzymatic glucose sensors.  相似文献   

13.
Potentiostatic anodization was developed to synthesize copper oxide/copper (CuxO/Cu, x=1,2) electrode with nano structure for sensitive non-enzymatic glucose detection. At a catalytic potential of 0.55 V, the CuO/Cu electrode presented a high sensitivity of 2954.38 μA mM−1 cm−2 to glucose and a linear range of 0.1 mM to 1.3 mM. The response time is less than 3 s with addition of 0.1 mM glucose. The CuO/Cu electrode above was anodized in 1M KOH solution at −100 mV and the morphology was compact nanoparticles and sparsely dispersed nanosheets, which enlarged the surface area and provided abundant electrocatalytic active sites. Compared the sensing property of electrodes with different morphologies, it indicated that nanostructure was significant to the efficient glucose catalytic oxidation process and it could be regulated by changing the potential and electrolyte concentration during anodization.  相似文献   

14.
Zhang W  Wen X  Yang S 《Inorganic chemistry》2003,42(16):5005-5014
We report the synthesis of nanostructured copper compound films on a copper surface under mild conditions. A series of low-dimensional structures including Cu(OH)(2) fibers and scrolls, CuO sheets and whiskers, and Cu(2)(OH)(2)CO(3) rods have been successfully grown on the copper surfaces at ambient temperature and pressure. Most of the structures are phase-pure single crystallites. The films were formed by the direct oxidation of copper in aqueous solutions of NaOH with an oxidant (NH(4))(2)S(2)O(8). The evolution of the ultrafine structures as a function of the reaction conditions has been revealed, from fibers of Cu(OH)(2) to scrolls of Cu(OH)(2) to sheets or whiskers of CuO. By replacing NaOH with NaHCO(3) in the synthesis, square/rectangular rod arrays of Cu(2)(OH)(2)CO(3) were obtained. The controlled reactions allow the large-scale, template-free, cost-effective synthesis of copper compound films with ordered, uniform, stable, ultrafine structures.  相似文献   

15.
An energy-efficient and environmentally friendly microwave-assisted method was adopted for synthesis of butterfly-like CuO assembled by nanosheets through a Cu2Cl(OH)3 precursor, using no template. Formation mechanism of the butterfly-like CuO was explored and discussed systematically for the first time on the basis of both experimental results and crystal structure transformations in atomic level. The electrochemical sensing properties of the butterfly-like CuO modified electrode to ascorbic acid (AA) were studied for the first time. The results reveal that Cu(OH)2 nanowires were formed once the Cu2+ ions, located in between two CuO4 parallelogram chains of a Cu2Cl(OH)3 precursor, dissolve into the solution as Cu(OH)42− complex ions after ion exchange reactions and simultaneous assemble along a axis. Upon microwave irradiation, the adjacent CuO4 parallelogram chains of the Cu(OH)2 nanowires dehydrate and assemble along c axis, forming CuO nanosheets with (002) as the main exposed facet, which were further assembled to butterfly-like CuO under the action of microwave field, suggesting that microwave field functions like a ‘directing agent’. The butterfly-like CuO modified electrode shows good electrochemical sensing properties to AA with a low detecting limit, short response time and wide linear response range.  相似文献   

16.
合成得到了含有N,N,N',N'-四羟乙基乙二胺(THEED)配体的Cu(Ⅱ)配合物[Cu(THEED)(H2O)]SO4,通过质谱、元素分析以及X-射线单晶衍射测定了它的组成和晶体结构,并用之作为电催化产氧催化剂的前驱体。在电解含有配合物的碱性NaOAc/NaOH溶液时可检测到氧气产生,并发现有黑色薄膜附着于阳极表面。利用扫描电子显微镜(SEM)、能量色散X射线(EDX)、X射线衍射(XRD)和X射线光电子能谱(XPS)确定该薄膜的主要成分是2 μm大小的无定形CuO颗粒。通过实验证明,CuO为真正的电催化水氧化催化剂,它具有较高活性和稳定性。在无Cu(Ⅱ)、0.10 mol/L NaOAc/NaOH溶液(pH=12.4)中,固定催化电压为1.35 V(相对于标准氢电极电压),催化电流密度可维持1.5 mA/cm2近6 h不变;7.5 h产生氧气97 μmol,法拉第效率95%。  相似文献   

17.
In order to demonstrate the activation effects of a Pt electrode by laser pulse irradiation, the electro-oxidation of glucose was tested at an activated Pt electrode by cyclic voltammetry. A fixed potential was applied to the electrode, and then the electrode was irradiated with laser pulses from a Nd:YAG laser at 20 Hz for 20 s. Activation by the laser pulse irradiation gave two remarkable effects on cyclic voltammograms from the electro-oxidation of glucose in a 0.1 mol dm(-3) NaOH solution, i.e., surface modulation and cleaning effects. Significant differences were found in the cyclic voltammograms at the activated and at the simply polished electrodes. Such differences in the oxidation waves are attributed to a crystallographic change of the electrode surface induced by a laser ablation, accompanied by laser pulse irradiation. Due to the cleaning effect, the activated Pt electrode gave a sharp oxidation wave at -0.3 V even in real samples containing various organic compounds that could foul the electrode, though the activated Pt electrode lacked selectivity to the electro-oxidation of glucose.  相似文献   

18.
Cu nanowires hold great promise for the fabrication of low-cost transparent electrodes. However, their current synthesis is mainly performed in aqueous media with poor nanowire dispersibility. We report herein the novel synthesis of ultralong single-crystalline Cu nanowires with excellent dispersibility, providing an excellent candidate material for high-performance transparent electrode fabrication.  相似文献   

19.
Vertically aligned copper oxide (CuO) nanowires were synthesized by directly heating copper foil on a hotplate under ambient conditions. The as‐grown CuO nanowires film is mechanically stable and was facilely attached to a glassy carbon (GC) electrode, offering an excellent electrochemical sensing platform. The CuO nanowires electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel vertically aligned CuO nanowires electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.  相似文献   

20.
Cu(OH)_2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)_2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)_2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)_2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)_2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)_2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)_2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)_2 nanowires showed outstanding oil-water emulsion separation capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号