首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process,which is known as the Coupled Scalar and Tachyon Bounce(CSTB) Universe. The CSTB model has been shown to be ghost free,and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon,homogeneity and singularity, resulting in a universe of the current size.  相似文献   

2.
New cosmology     
We propose a model of our universe as a 3-sphere resting on the surface of a black hole which exists in a spacetime consisting of four space dimensions and one time dimension. The matter and energy within our universe exist as stationary solutions to the field equations in the Rindler coordinates just above the horizon of the black hole. Each solution may be though of as a standing wave consisting of a wave propagating toward the horizon superposed with its time-reversed twin propagating away from the horizon. As matter and energy from the greater five-dimensional spacetime fall into the black hole, its radius increases and our universe expands. This mechanism of expansion allows the model to describe a universe which is older than its oldest stars and homogeneous without inflation. It also predicts galaxy counts at high redshift which agree with observation.  相似文献   

3.
We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.  相似文献   

4.
The inflationary model of the universe can explain several of the cosmological conundra that are mysteries in the standard hot big bang model. Paul Davies has suggested that inflation can also explain the second law of thermodynamics, which describes the time asymmetry of the universe. Here I note several difficulties with this suggestion, showing how the present inflationary models must assume the arrow of time rather than explaining it. If the second law is formulated as a consequence of the hypothesis that there were no long-range spatial correlations in the initial state of the universe, it is shown how some of the cosmological conundra might be explained even without inflation. But if the ultimate explanation is to include inflation, three, essential elements remain to be demonstrated which I list.  相似文献   

5.
We propose a mechanism of reheating after inflation in multi-throat scenarios of warped extra dimensions. Validity of an effective field theory on the standard model (SM) brane requires that the position of the SM brane during inflation be different from the position after inflation. The latter is supposed to be near the tip of the SM throat but the former is not. After inflation, when the Hubble expansion rate becomes sufficiently low, the SM brane starts moving towards the tip and eventually oscillates. The SM fields are excited by the brane motion and the universe is reheated. Since interaction between the brane position modulus and the SM fields is suppressed only by the local string scale, the modulus effectively decays into the SM fields.  相似文献   

6.
《Physics letters. [Part B]》1988,208(2):198-202
A scale invariant model for early universe inflationary cosmology is developed. In order to realize dilatation invariance and spontaneous symmetry breaking we introduce two scalar fields, a dilaton and an inflaton. The scale invariant theory encompasses the Brans-Dicke and induced-gravity models as limiting cases. The model is solved numerically for a wide class of initial conditions. We find that the inflationary epoch is generically characterized by a two phase evolution of the universe: A single or double exponential era and a power-law expansion. Onset of gravity triggers double exponential evolution of the scale factor. We further examine inflation in the Brans-Dicke theory and find that scale invariance is restored in the course of spontaneous symmetry breaking.  相似文献   

7.
Inflation provides a natural mechanism to account for the origin of cosmic structures. The generation of primordial inhomogeneities during inflation can be understood via the spontaneous creation of quanta from the vacuum. We show that when the corresponding stimulated creation of quanta is considered, the characteristics of the state of the universe at the onset of inflation are not diluted by the inflationary expansion and can be imprinted in the spectrum of primordial inhomogeneities. The non-gaussianities (particularly in the so-called squeezed configuration) in the cosmic microwave background and galaxy distribution can then tell us about the state of the universe that existed at the time when quantum field theory in curved spacetime first emerged as a plausible effective theory.  相似文献   

8.
The early universe inflation is well known as a promising theory to explain the origin of large-scale structure of universe and to solve the early universe pressing problems.For a reasonable inflation model,the potential during inflation must be very flat,at least,in the direction of the inflaton.TO construct the inflaton potential all the known related astrophysics observations should be included.For a general tree-level hydrid inflation potential,which is not discussed fully so far,the parameters in it are shown how to be constrained via the astrophysics data observed and to be obtained to the expected accuracy,and to be consistent with cosmology requirements.  相似文献   

9.
We discuss the dynamics of anisotropic Bianchitype IX models in Jordan-Brans-Dicke cosmological theoryrendering the evolution of a universe model with closedspace near its beginning before inflation sets in. This paper displays how, when writtenin terms of reduced variables, the field equations allowstraightforward partial integration. The mean expansionH, the scalar field, and the three scale factors aregiven in terms of the volume expansion.  相似文献   

10.
We study the quantization of the Einstein-Hilbert action for a small true vacuum bubble without matter or scalar field. The quantization of action induces an extra term of potential called quantum potential in Hamilton-Jacobi equation, which gives expanding solutions, including the exponential expansion solutions of the scalar factor a for the bubble. We show that exponential expansion of the bubble continues with a short period, no matter whether the bubble is closed, flat, or open. The exponential expansion ends spontaneously when the bubble becomes large, that is, the scalar factor a of the bubble approaches a Planck length lp. We show that it is the quantum potential of the small true vacuum bubble that plays the role of the scalar field potential suggested in the slow-roll inflation model. With the picture of quantum tunneling, we calculate particle creation rate during inflation, which shows that particles created by inflation have the capability of reheating the universe.  相似文献   

11.
12.
The role of gravitational energy in the evolution of the universe is examined. In co-moving coordinates, calculation of the Landau-Lifshitz pseudotensor for FRW models reveals that: (i) the total energy of a spatially closed universe irrespective of the equation of state of the cosmic fluid is zero at all times, (ii) the total energy enclosed within any finite volume of the spatially flat universe is zero at all times, (iii) during inflation the vacuum energy driving the accelerated expansion and ultimately responsible for the creation of matter (radiation) in the universe, is drawn from the energy of the gravitational field. In a similar fashion, certain cosmological models which abandon adiabaticity by allowing for particle creation, use the gravitational energy directly as an energy source.  相似文献   

13.
Recently the background independent nonperturbative quantization has been extended to various theories of gravity and the corresponding quantum effective cosmology has been derived, which provides us with necessary avenue to explore the pre-inflationary dynamics. Brans-Dicke (BD) loop quantum cosmology (LQC) is one of such theories whose effective background dynamics is considered in this article. Starting with a quantum bounce, we explore the pre-inflationary dynamics of a universe sourced by a scalar field with the Starobinsky potential in BD-LQC. Our study is based on the idea that though Einstein's and Jordan's frames are classically equivalent up to a conformal transformation in BD theory, this is no longer true after quantization. Taking the Jordan frame as the physical one we explore in detail the bouncing scenario which is followed by a phase of a slow roll inflation. The three phases of the evolution of the universe, namely, bouncing, transition from quantum bounce to classical universe, and the slow roll inflation, are noted for an initially kinetic energy dominated bounce. In addition, to be consistent with observations, we also identify the allowed phase space of initial conditions that would produce at least 60 e-folds of expansion during the slow roll inflation.  相似文献   

14.
We study a closed model of the universe filled with viscous fluid and quintessence matter components in a Brans-Dicke type cosmological model. The dynamical equations imply that the universe may look like an accelerated flat Friedmann-Robertson-Walker universe at low redshift. We consider here dissipative processes which follow a causal thermodynamics. The theory is applied to viscous fluid inflation, where accepted values for the total entropy in the observable universe are obtained.  相似文献   

15.
A model for inflation based on a quantum gravity scenario is presented. The process allows inflation of a Planck size bubble to the observed universe.  相似文献   

16.
Recently, a novel idea [1] has been proposed to relax the electroweak hierarchy problem through the cosmological inflation and the axion periotic potential. Here, we further assume that only the attractive inflation is needed to explain the light mass of the Higgs boson, where we do not need a specified periodic potential of the axion field. Attractive inflation during the early universe drives the Higgs boson mass from the large value in the early universe to the small value at present, where the Higgs mass is an evolving parameter of the Universe. Thus, the small Higgs mass can technically originate from the cosmological evolution rather than dynamical symmetry or anthropics. Further, we study the possible collider signals or constraints at a future lepton collier and the possible constraints from the muon anomalous magnetic moment. A concrete attractive relaxion model is also discussed, which is consistent with the data of Planck 2015.  相似文献   

17.
A new “twice loose shoe“ method in the Wheeler-DeWitt equation of the universe wavefunction on the cosmic scale factor a and a scalar field φ is suggested,We analyze both the affections coming from the tunnelling effect of α and the potential well effect of φ,and obtain the initial values α0 about a primary closed universe which is born with the largest probability in the quantum manner,Our result is able to overcome the “large field difficulty“ of the universe quantum creation probabiltiy with only tunnelling effect.This new born universe has to suffer a startup of inflation,and then comes into the usual slow rolling inflation.The universe with the largest probalility maybe has a “gentle“ inflation of an eternal chaotic infltion.this depends on a new parameter q which describes the tunnelling character.  相似文献   

18.
The effect of fluctuations in the density of matter on the expansion of the universe far from the singularity is analyzed on the basis of a model with a three-dimensional space which is homogeneous and isotropie on the average. The fluctuations reduce the gravitational effect, retarding the expansion. This effect of the fluctuations increases as the expansion proceeds and can strongly affect the expansion velocity. An equation is derived for the age of the universe on the basis of this model. The age is expressed in terms of observable quantities: the Hubble constant and the acceleration parameter. It is shown that fluctuations lead to an increase in this age. It is concluded that fluctuations must be taken into account in studying the expansion of the observable universe.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 7–11, January, 1977.  相似文献   

19.
By using the formulation of the reconstruction, we explicitly construct models of k-essence, which unify the inflation in the early universe and the late accelerating expansion of the present universe by a single scalar field. Due to the higher derivative terms, the solution describing the unification can be stable in the space of solutions, which makes the restriction for the initial condition relaxed. The higher derivative terms also eliminate tachyon. Therefore we can construct a model describing the time development, which cannot be realized by a usual inflaton or quintessence models of the canonical scalar field due to the instability or the existence of tachyon. We also propose a mechanism of the reheating by the quantum effects coming from the variation of the energy density of the scalar field.  相似文献   

20.
The equations of state for a perfect bosonic gas in Kaluza-Klein universe M4 × SD have bean studied.We have derived out the variation of density, pressure and entropy density of the gas as the functions of the temperature T and the scale factor of the extra subspace R2.A rapid change of the behavior of the gas is found to happen while R2T is about one. A dynamical model shows that provided the dimension D of extra subspace is not too small,the gas behaves till the end of inflation stage the gas behaves till the end of inflation stage as an ordinary gas in M4+D rather than that in M4 as usually expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号