首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A NACA 0015 airfoil with and without a Gurney flap was studied in a wind tunnel with Re c = 2.0 × 105 in order to examine the evolving flow structure of the wake through time-resolved PIV and to correlate this structure with time-averaged measurements of the lift coefficient. The Gurney flap, a tab of small length (1–4% of the airfoil chord) that protrudes perpendicular to the chord at the trailing edge, yields a significant and relatively constant lift increment through the linear range of the C L versus α curve. Two distinct vortex shedding modes were found to exist and interact in the wake downstream of flapped airfoils. The dominant mode resembles a Kàrmàn vortex street shedding behind an asymmetric bluff body. The second mode, which was caused by the intermittent shedding of fluid recirculating in the cavity upstream of the flap, becomes more coherent with increasing angle of attack. For a 4% Gurney flap at α = 8°, the first and second modes corresponded with Strouhal numbers based on flap height of 0.18 and 0.13. Comparison of flow around ‘filled’ and ‘open’ flap configurations suggested that the second shedding mode was responsible for a significant portion of the overall lift increment.  相似文献   

2.
Effects of Gurney Flaps on a NACA0012 Airfoil   总被引:4,自引:0,他引:4  
Experimental measurements of surface pressure distributions and wake profiles were obtained for a NACA0012 airfoil to determine the lift, drag, and pitching-moment coefficients for various configurations. The addition of a Gurney flap increased the maximum lift coefficient from 1.37 to 1.74, however there was a drag increment at low-to-moderate lift coefficient. In addition, the boundary layer profile measurements were taken using a rake of total pressure probes at the 90% chord location on the suction side. The effective Gurney flap height is about 2% of chord length, which provides the highest lift-to-drag ratio among the investigated configurations when compared with the clean NACA0012 airfoil. In this case, the device remains within the boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
This research numerically elucidates the effects of suction and blowing on the enhancement of unsteady aerodynamic characteristics of flows and their corresponding impact on stall delay over the well-known NACA0012 airfoil at various angles of attack (\( 12 \le {\text{AOA}} \le 20 \)) under low Reynolds numbers. For this purpose, an in-house solver written in C++ is developed. The numerical code utilizes the Jameson’s cell-centered finite volume numerical method accompanied by a progressive power-law preconditioning approach to suppress the stiffness of the governing equations. Many numerical simulations are performed over the suction-blowing control parameters, namely, the slot location (\( L_{j} \)), suction/blowing amplitudes (\( A_{j} \)), and suction/blowing angle (\( \theta_{j} \)). Most of the analyses are based on the measurements of the unsteady aerodynamic characteristics behaviors (such as lift, drag, moment coefficients, and stall phenomena) over the airfoil. The numerical results confirm that the unsteady behavior of the flow (vortex shedding) is weakened or approximately removed when suction is used, especially near the leading edge. In all of the test cases, the ratio of the average lift coefficient to the average drag coefficient increases with increasing suction and blowing amplitudes, except in the case of perpendicular blowing. Furthermore, the blowing is more sensitive to the blowing angle compared to the suction. From the suction and blowing results, it is concluded that the former has a more positive impact on the lift and drag characteristics, especially in the case of incompressible flow at Low-Reynolds regimes.  相似文献   

4.
The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the vorticity/stream-function form. By applying an operator-splitting method, the “convection” and “diffusion” equations are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle in the computational domain into the physical domain through a Joukowski transformation. The effects of several parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.  相似文献   

5.
We present the transient phenomena occurring during the impulsive control of flow separation over a NACA0015 airfoil at an incidence angle of 11° and a chord Reynolds number of 1 million. Actuation is performed via pneumatic vortex generators, impulsively activated in order to analyze the transient phenomena corresponding to the attachment process and, conversely, to transient re-separation occurring when the actuators are switched off. Measurements are performed using a linear array of unsteady pressure transducers and a single traversing crosswire. The pressure transducers are positioned in the separated region of the airfoil, which extends ∼ 0.3c upstream of the trailing edge at the above flow condition. To control the flow, the angled fluidic vortex generators are positioned in a single spanwise array located 0.3c downstream of the leading edge of the airfoil. We establish a statistical relationship between pressure and velocity signals during both the uncontrolled steady state and the transient processes of attachment and separation. The unsteady behavior of the attachment process is also qualitatively analyzed via a 0.3 million Reynold number visualizations. The emission of a “starting vortex” is evidenced. This corresponds to a transient increase of drag.  相似文献   

6.
A wind tunnel experimental investigation of self-sustained oscillations of an aeroelastic NACA0012 airfoil occurring in the transitional Re regime is presented. To the authors’ knowledge this is the first time that aeroelastic limit cycle oscillations (LCOs) associated with low Re effects have been systematically studied and reported in the public literature. While the aeroelastic apparatus is capable of two-degree-of-freedom pitch-plunge motion, the present work concerns only the motion of the airfoil when it is constrained to rotate in pure pitch. The structural stiffness is varied as well as the position of the elastic axis; other parameters such as surface roughness, turbulence intensity and initial conditions are also briefly discussed. In conjunction with the pitch measurements, the flow is also recorded using hot-wire anemometry located in the wake at a distance of one chord aft of the trailing edge. It is observed that for a limited range of chord-based Reynolds numbers, 4.5×104Rec1.3×105, steady state self-sustained oscillations are observed. Below and above that range, these oscillations do not appear. They are characterized by a well-behaved harmonic motion, whose frequency can be related to the aeroelastic natural frequency, low amplitude (θmax<5.5°) and some sensitivity to flow perturbations and initial conditions. Furthermore, hot-wire measurements for the wing held fixed show that no periodicity in the undisturbed free-stream nor in the wake account for the oscillations. Overall, these observations suggest that laminar separation plays a role in the oscillations, either in the form of trailing edge separation or due to the presence of a laminar separation bubble.  相似文献   

7.
This paper reports on the effects of a series of fluid-dynamic dielectric barrier discharge plasma actuators on a NACA0015 airfoil at high angle of attack. A set of jet actuators able to produce plasma jets with different directions (vectoring effect) and operated at different on/off duty cycle frequencies are used. The experiments are performed in a wind tunnel facility. The vectorized jet and the transient of the flow induced by unsteady duty cycle operation of each actuator are examined and the effectiveness of the actuator to recover stall condition in the range of Reynolds numbers between 1.0 × 105 and 5.0 × 105 (based on airfoil chord), is investigated. The actuator placed on the leading edge of the airfoil presents the most effective stall recovery. No significant effects can be observed for different orientations of the jet. An increase of the stall recovery is detected when the actuator is operated in unsteady operation mode. Moreover, the frequency of the on/off duty cycle that maximizes the stall recovery is found to be a function of the free stream velocity. This frequency seems to scale with the boundary layer thickness at the position of the actuator. A lift coefficient increase at low free stream velocities appears to linearly depend on the supply voltage.  相似文献   

8.
A stochastic estimation technique has been applied to simultaneously acquired data of velocity and surface pressure as a tool to identify the sources of wall-pressure fluctuations. The measurements have been done on a NACA0012 airfoil at a Reynolds number of Re c  = 2 × 105, based on the chord of the airfoil, where a separated laminar boundary layer was present. By performing simultaneous measurements of the surface pressure fluctuations and of the velocity field in the boundary layer and wake of the airfoil, the wall-pressure sources near the trailing edge (TE) have been studied. The mechanisms and flow structures associated with the generation of the surface pressure have been investigated. The “quasi-instantaneous” velocity field resulting from the application of the technique has led to a picture of the evolution in time of the convecting surface pressure generating flow structures and revealed information about the sources of the wall-pressure fluctuations, their nature and variability. These sources are closely related to those of the radiated noise from the TE of an airfoil and to the vibration issues encountered in ship hulls for example. The NACA0012 airfoil had a 30 cm chord and aspect ratio of 1.  相似文献   

9.
A flow control technique by local vibration is proposed to improve the aerodynamic performance of a typical airfoil NACA 0012. Both wind-tunnel experiments and a large eddy simulation(LES) are carried out to study the effects of local vibration on drag reduction over a wide range of angles of attack. The application parameters of local vibration on the upper surface of the airfoil are first evaluated by numerical simulations.The mounted position is chosen at 0.065–0.09 of chord length from the leading edge.The influence of oscillation frequency is investigated both by numerical simulations and experiments. The optimal frequencies are near the dominant frequencies of shear layer vortices and wake vortices. The patterns of shear vortices caused by local vibration are also studied to determine the drag reduction mechanism of this flow control method. The results indicate that local vibration can improve the aerodynamic performance of the airfoil. In particular, it can reduce the drag by changing the vortex generation patterns.  相似文献   

10.
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the prac-ticability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disinte-grates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17%occurs with a triangular shape, while the max-imum increase in aerodynamic efficiency (lift-to-drag ratio) of around 10%happens with a rectangular shape at an angle of attack of 2.26?.  相似文献   

11.
Ajalli  F.  Mani  M.  Tadjfar  M. 《Experimental Techniques》2015,39(5):48-60
Experimental Techniques - Experimental measurements were conducted on a plunging Eppler 361 Gurney flapped airfoil to study wake structure and dynamic stall phenomenon in the wake. The heights of...  相似文献   

12.
Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m/s) is explored using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation. High-frequency actuation, referred to here as quasi-steady forcing, slightly delays separation while lengthening and flattening the separated region without drastically increasing the measured lift. The actuator is found to be most effective for increasing lift when operated in an unsteady fashion at the natural oscillation frequency of the trailing edge flow field. Results indicate that the primary control mechanism in this configuration is an enhancement of the natural vortex shedding that promotes further momentum transfer between the freestream and separated region. Based on these results, different modulation waveforms for creating unsteady DBD plasma-induced flows are investigated in an effort to improve control authority. Subsequent measurements show that modulation using duty cycles of 50–70% generates stronger velocity perturbations than sinusoidal modulation in quiescent conditions at the expense of an increased power requirement. Investigation of these modulation waveforms for trailing edge separation control similarly shows that additional increases in lift can be obtained. The dependence of these results on the actuator carrier and modulation frequencies is discussed in detail.  相似文献   

13.
This paper provides a study of the NACA0012 dynamic stall at Reynolds numbers 105 and 106 by means of two- and three-dimensional numerical simulations. The turbulence effect on the dynamic stall is studied by statistical modelling. The results are compared with experiments concerning each test case. Standard URANS turbulence modelling have shown a quite dissipative character that attenuates the instabilities and the vortex structures related to the dynamic stall. The URANS approach Organised Eddy Simulation (OES) has shown an improved behaviour at the high Reynolds number range. Emphasis is given to the physical analysis of the three-dimensional dynamic stall structure, for which there exist few numerical results in the literature, as far as the Reynolds number range is concerned. This study has shown that the downstroke phases of the pitching motion are subjected to strong three-dimensional turbulence effects along the span, whereas the flow is practically two-dimensional during the upstroke motion.  相似文献   

14.
The impact of Gurney flaps (GF), of different heights and perforations, on the aerodynamic and wake characteristics of a NACA 0015 airfoil equipped with a trailing-edge flap (TEF) was investigated experimentally at Re = 2.54 × 105. The addition of the Gurney flap to the TEF produced a further increase in the downward turning of the mean flow (increased aft camber), leading to a significant increase in the lift, drag, and pitching moment compared to that produced by independently deployed TEF or GF. The maximum lift increased with flap height, with the maximum lift-enhancement effectiveness exhibited at the smallest flap height. The near wake behind the joint TEF and GF became wider and had a larger velocity deficit and fluctuations compared to independent GF and TEF deployment. The Gurney flap perforation had only a minor impact on the wake and aerodynamics characteristics compared to TEF with a solid GF. The rapid rise in lift generation of the joint TEF and GF application, compared to conventional TEF deployment, could provide an improved off-design high-lift device during landing and takeoff.  相似文献   

15.
低Reynolds数NACA0012翼型绕流的流动特性分析   总被引:1,自引:0,他引:1  
吴鋆  李天  王晋军 《实验力学》2014,29(3):265-272
在水槽中应用PIV测速技术研究了NACA0012翼型在Reynolds数为8200时的流动特性,重点关注了翼型绕流结构中主频和扰动增长速率随迎角的变化。结果表明,分离剪切层的扰动增长符合指数规律;且随着迎角的增大,转捩过程加速,表现为扰动增长率逐渐增大,转捩的起始位置逐渐向上游移动。在所有实验迎角情况下,流场均由脱落旋涡主导,但其主导作用随着迎角的增大而削弱。  相似文献   

16.
Large-eddy simulations (LES) are employed to understand the flow field over a NACA 0015 airfoil controlled by a dielectric barrier discharge (DBD) plasma actuator. The Suzen body force model is utilised to introduce the effect of the DBD plasma actuator. The Reynolds number is fixed at 63,000. Transient processes arising due to non-dimensional excitation frequencies of one and six are discussed. The time required to establish flow authority is between four and six characteristic times, independent of the excitation frequency. If the separation is suppressed, the initial flow conditions do not affect the quasi-steady state, and the lift coefficient of the higher frequency case converges very quickly. The transient states can be categorised into following three stages: (1) the lift and drag decreasing stage, (2) the lift recovery stage, and (3) the lift and drag converging stage. The development of vortices and their influence on control is delineated. The simulations show that in the initial transient state, separation of flow suppression is closely related to the development spanwise vortices while during the later, quasi-steady state, three-dimensional vortices become more important.  相似文献   

17.
18.
In this work, various turbulent solutions of the two‐dimensional (2D) and three‐dimensional compressible Reynolds averaged Navier–Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart–Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear‐layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three‐dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Trapping of vortices in a cavity has been explored in recent years as a drag reduction measure for thick airfoils. If, however, trapping fails, then oscillation of the cavity flow may couple with elastic vibration modes of the airfoil. To examine this scenario, the effect of small amplitude vertical motion on the oscillation of the shear layer above the cavity is studied by acoustic forcing simulating a vertical translation of a modified NACA0018 profile. At low Reynolds numbers based on the chord (O(104)), natural instability modes of this shear layer are observed for Strouhal numbers based on the cavity width of order unity. Acoustic forcing sufficiently close to the natural instability frequency induces a strong non-linear response due to lock-in of the shear layer. At higher Reynolds numbers (above 105) for Strouhal number 0.6 or lower, no natural instabilities of the shear layer and only a linear response to forcing were observed. The dynamical pressure difference across the airfoil is then dominated by added mass effects, as was confirmed by numerical simulations.  相似文献   

20.
The unsteady low Reynolds number aerodynamics phenomena around flapping wings are addressed in several investigations. Elsewhere, airfoils at higher Mach numbers and Reynolds numbers have been treated quite comprehensively in the literature. It is duly noted that the influence of heat transfer phenomena on the aerodynamic performance of flapping wings configurations is not well studied. The objective of the present study is to investigate the effect of heat transfer upon the aerodynamic performance of a pitching and plunging NACA0012 airfoil in the low Reynolds number flow regime with particular emphasis upon the airfoil's lift and drag coefficients. The compressible Navier–Stokes equations are solved using a finite volume method. To consider the variation of fluid properties with temperature, the values of dynamic viscosity and thermal diffusivity are evaluated with Sutherland's formula and the Eucken model, respectively. Instantaneous and mean lift and drag coefficients are calculated for several temperature differences between the airfoil surface and freestream within the range 0–100 K. Simulations are performed for a prescribed airfoil motion schedule and flow parameters. It is learnt that the aerodynamic performance in terms of the lift CL and drag CD behavior is strongly dependent upon the heat transfer rate from the airfoil to the flow field. In the plunging case, the mean value of CD tends to increase, whereas the amplitude of CL tends to decrease with increasing temperature difference. In the pitching case, on the other hand, the mean value and the amplitude of both CD and CL decrease. A spectral analysis of CD and CL in the pitching case shows that the amplitudes of both CD and CL decrease with increasing surface temperature, whereas the harmonic frequencies are not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号