首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The preparations and characterisation of cationic complexes of the type [Rh(CO)(MeCN)(PR3)2]ClO4, [Rh(CO)L(PR3)2]ClO4 (L=py or 2-MeOpy), [Rh(CO)(L-L)(PR3)2]ClO4 (L-L = bipy or phen) and [Rh(CO)(PR3)3]ClO4 with PR3 = P(p-YC6H4)3 (Y=Cl, F, Me or MeO) are described.  相似文献   

3.
Summary The carbonyl-N-phenylanthranilatorhodium(I) complex [Rh(CO)2(FA)] (1) was obtained by heating RhCl3 · 3 H2O withN-phenylanthranilic acid (HFA) in boiling dimethylformamide (DMF). Triphenylphosphine, PPh3, can replace one carbonyl ligand in complex (1) to produce [Rh(CO)(PPh3)(FA)] (2). Complexes (1) and (2) were characterized by analytical and physicochemical methods.  相似文献   

4.
5.
The syntheses are described of a range of cationic rhodium(I) thiocarbonyl complexes containing tertiary phosphine, phosphinite, phosphonite and phosphonite ligands.  相似文献   

6.
7.
A number of cationic rhodium(I) complexes of the type [Rh(CO)2(NN)]ClO4, [Rh(CO)2L3]ClO4 and [Rh(CO)(NN)L2]ClO4, where (NN) is 2,2-bipyridine or 1,10-phenanthroline and L is a tertiary phosphine or arsine, have been isolated and their structures assigned. The configuration of the complexes ion [Rh(CO)2L3]+ appears to depend critically on the size of the ligand L.  相似文献   

8.
Novel carbonyl complexes of rhodium(I) and rhodium(III) containing the bidenate nitrogen donor ligand 2,2′-biquinoline (biq) have been prepared; they are of the types RhX(CO)2 biq and RhX(CO)biq (X = Cl, Br, I). Cationic carbonyl and substituted carbonyl complexes of the types [Rh(CO)2biq]ClO4 and [Rh(CO)biqL2]ClO4, where L is tertiary phosphine or arsine have also been isolated. In spite of considerable steric crowding around the nitrogen atoms, 2,2′-biquinoline behaves much like 2,2′-bipyridine in forming carbonyl complexes of rhodium.  相似文献   

9.
The reaction of benzoyl chloride with [Rh(dppp)2]Cl at 190°C and with [Rh(dppp)Cl]1 or 2 at 25°C where dppp  1,3-bis(diphenylphosphino)propane has been examined. In both cases the five coordinate compound RhCl2(COPh)-(dppp) was rapidly formed and isolated in high yield. This compound does not undergo phenyl migration to RhCl2(CO)(Ph)(dppp) even upon warming to 190°C in benzoyl chloride solution and no decarbonylation products are observed. This is in marked contrast to the reaction of RhCl(PPh3)3 with benzoyl chloride where the migrated product RhCl2(CO)(Ph)(PPh3)2 is formed with the eventual reductive elimination of chlorobenzene. The single crystal X-ray analysis of RhCl2(COPh)(dppp) has been carried out (R  0.036). The compound is square pyramidal with the COPh group in the apical position. The Rh—C bond distance of 1.992(3) Å is short for a RhIII—Cσ bond and indicates dπ → π back bonding.  相似文献   

10.
The effect of temperature (2–100 K) on the emission spectra and lifetimes of [M(2 = phos)2]ClO4 (M = Rh(I), Ir(I): 2 = phos is cis-1,2-bis-(diphenylphosphino)ethylene) is interpreted with a two-level spin-orbit-split emitting manifold. For [Ir(2 = phos)2]ClO4, Δ? = 143cm?1, τ(lower) = 999μs, and τ(higher) = 1.54 μs. For the rhodium species, Δ? = 35 cm?1, τ(lower) = 5920 μs, and τ(higher) = 20.3 μs.  相似文献   

11.
The syntheses of [Rh(diol)(formamidine)]2 complexes (diol  cycloocta-1,5-diene (1); diol  norbornadiene (2); formamidine  N,N′-di-p-tolylformamidine) are reported. These complexes are dimeric and contain the bridging formamidino ligand. They react with CO, dppe and PPh3 with displacement of the diene ligand to yield the known [Rh(CO)2(formamidine)]2, [Rh(dppe)2]+ and [Rh(PPh3)2(formamidine)], respectively; the last complex, in which the formamidine acts as a chelating ligand, was isolated only as the O2 adduct. With HCl or HBF4 aqueous 1 and 2 do not form hydrides but instead the formamidino cation [p-tolyl-NHCHNHtolyl-p]+ and the complexes [Rh(diol)X]2 (X  Cl, F); a possible scheme for the reaction with HCl is proposed. The [Rh(C8H12)(formamidine)]2 complex reacts with heterocumulenes as CS2, SO2, PhNCS and PhNCO with diene displacement; the only product isolated was [Rh(CS2)2(formamidine], to which a polymeric structure is assigned.  相似文献   

12.
Reaction of [[Rh(mu-Cl)(CO)2]2] with the triazene ArNNNHAr (Ar = o-CO2MeC6H4) produced the mononuclear complex [RhCl(ArNNNHAr)(CO)2] (1). Complex 1 reacted with KOH in methanol to give the dinuclear compound [[Rh(mu-ArNNNAr)(CO)2]2] (2), which showed a "mu-(1kappaN1,2kappaN3)-ArNNNAr" coordination mode for both bridging ligands. The dinuclear complex [[Rh(mu-ArNNNAr)(CO)2]2] (2) easily undergoes redistribution reactions in which the eight-membered "Rh2(NNN)2" core is broken. Thus, reaction of 2 with the anionic complex (NHEt3)[RhCl2(CO)2] gave the single-bridged complex (NHEt3)[Rh2(mu-ArNNNAr)Cl2(CO)4] (4), while the trinuclear complexes [Rh3(mu-ArNNNAr)(mu-Cl)(mu-CO)Cl(CO)4] (5) and [Rh3(mu-ArNNNAr)2(mu-Cl)(mu-CO)(CO)3] (6) were isolated by addition of the neutral compound [[Rh(mu-Cl)(CO)2]2] to 2, depending on the molar ratio employed. The formation of 5 and 6 involved the loss of carbonyl groups and the coordination of the oxygen atoms of the CO2Me groups. The structures of 4, 5, and 6 have been determined by X-ray diffraction methods, which show the ability of bis(o-carboxymethylphenyl)triazenide to act as bi-, tri-, and tetra-dentate ligand-spanning dinuclear moieties in trinuclear complexes.  相似文献   

13.
The solid-state IR spectrum of Me(3)PAuSCN shows two signals in the range of the C-N stretching vibrations at 2075 and 2113 cm(-1). On the basis of thoroughly tested quantum chemical ab initio calculations (MP2 level of theory) these signals have been assigned to the two isomeric forms Me(3)PAuNCS and Me(3)PAuSCN. The molecular structures, the vibrational frequencies, and the relative energies of the two species have been calculated and the results compared with the experimental IR data. Treatment of Me(3)PAuSCN with equimolar quantities of [(Me(3)P)Au](+)[SbF(6)](-) in CH(2)Cl(2) at -78 degrees C gives the dinuclear reaction product [C(7)H(9)Au(2)NP(2)S](+)[SbF(6)](-) in high yields. A comparison of results of ab initio calculations and IR data suggest that at least three isomeric cationic species [(R(3)PAu)(2)NCS](+), [(R(3)PAu)(2)SCN](+) and [(R(3)PAu)SCN(AuPR(3))](+) are present, the second and third being the predominant components. The structures and vibrational frequencies of all three species have been calculated. The relative energies in the gas phase and in solution are discussed and compared with the corresponding data of the experimental IR spectra.  相似文献   

14.
Variable temperature NMR spectra of the complexes [M(C5H4CPh2)(C8H12)]X (C5H4CPh2 = 6,6-diphenylfulvene; C8H12 = 1,5-cyclooctadiene; M = Ir, X = PF6; M = Rh, X = ClO4) provide evidence of intramolecular rearrangement involving rotation of the diphenylfulvene ligand about the metal-fulvene axis. Rearrangement is slow on the NMR time-scale for both complexes at 223 K: spectra recorded at higher temperatures indicate that the barrier to rotation of the diphenylfulvene ligand is lower for the iridium than for the rhodium complex.  相似文献   

15.
The reactions of [Rh(CO)2Cl]2 with α-diimines, RN=CR′-CR′=NR (R = c-Hex, C6H5, p-C6H4OH, p-C6H4CH3, p-C6H4OCH3, R′ = H; R = c-Hex, C6H5, p-C6H4OH, p-C6H4OCH3; R′ = Me) in 2:1 Rh/R-dim ratio gave rise to ionic compounds [(CO)2Rh.R-dim(R′,R′)][Rh(CO)2Cl2] which have been characterized by elemental analyses, electrical conductivity, 1H-NMR and electronic and IR spectroscopy. Some of these complexes must involve some kind of metal-metal interaction. The complex [Rh(CO)2Cl.c-Hex-dim(H,H)] has been obtained by reaction of [Rh(CO)2Cl]2 with the c-Hex-dim(H,H) ligand in 1:1 Rh/R-dim ratio. The reactions between [(CO)2Rh.R-dim(H,H)][Rh(CO)2Cl2](R = c-Hex or p-C6H4OCH3) with the dppe ligand have been studied. The known complex RhCl(CO)(PPh3)2 has been isolated from the reaction of [(CO)2Rh.R-dim(H,H)]-[Rh(CO)2Cl2] (R = c-Hex or p-C6H4OCH3) with PPh3 ligand.  相似文献   

16.
High optical yields are obtained in the hydrogenation of α-acetamidocinnamic acid using [(COD)Rh((+)PPFA)]ClO4 and related complexes as catalysts. (+)PPFA is (S)-α-[(R)-2-diphenylphosphinoferrocenyl] ethyldimethylamine.  相似文献   

17.
18.
19.
A new series of different nuclearity silver(I) complexes with a variety of tetracyano pendant-armed hexaazamacrocyclic ligands containing pyridine rings (Ln) has been prepared starting from the nitrate and perchlorate Ag(I) salts in acetonitrile solutions. The ligands and complexes were characterized by microanalysis, conductivity measurements, IR, Raman, electronic absorption and emission spectroscopy, and L-SIMS spectrometry. (1)H NMR titrations were employed to investigate silver complexation by ligands L3 and L.(4) The compounds [Ag2L2(NO3)2] (2), ([Ag2L2](ClO4)2.2CH3CN)(infinity) (4), [AgL3](ClO(4)).CH3CN (5), and [Ag4(L4)2(NO3)2](NO3)2.4CH3CN.2H2O (7) were also characterized by single-crystal X-ray diffraction. The complexes have different nuclearities. Complex 2 is dinuclear with an {AgN3O2} core and a significant intermetallic interaction, whereas complex 4 has a polymeric structure formed by dinuclear distorted {AgN4} units joined by nitrile pendant arms. Compound 5 is mononuclear with a distorted {AgN2} linear geometry, and complex 7 consists of discrete units of a tetranuclear array of silver atoms with {AgN3O} and {AgN4} cores in distorted square planar environments. Complexes 2 and 4 were found to be fluorescent in the solid state at room temperature because of the Ag-Ag interactions.  相似文献   

20.
Dimethylphosphite, (CH3O)2P(O)H, adds oxidatively to iridium(I) and rhodium(I) complexes to give hydrido-iridium(III) or -rhodium(III) dimethylphosphonate complexes. A complex Ir(H)Cl[P(O)(OCH3)2][P(OH)(OCH3)2]3 obtained from [IrCl(C8H14)2]2 and dimethylphosphite catalyses the stereo-selective reduction of 4-t-butylcyclohexanone to 973cis/trans-4-t-butylcyclohexanol, the ratio being identical with that obtained using the Henbest catalyst iridium(IV) chloride, phosphorous acid or one of its esters, and aqueous isopropanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号