共查询到20条相似文献,搜索用时 0 毫秒
1.
Rao JS Dinadayalane TC Leszczynski J Sastry GN 《The journal of physical chemistry. A》2008,112(50):12944-12953
Hydration of mono- and divalent metal ions (Li(+), Na(+), K(+), Be(2+), Mg(2+) and Ca(2+)) has been studied using the DFT (B3LYP), second-order M?ller-Plesset (MP2) and CCSD(T) perturbation theory as well as the G3 quantum chemical methods. Double-zeta and triple-zeta basis sets containing both (multiple) polarization and diffuse functions were applied. Total and sequential binding energies are evaluated for all metal-water clusters containing 1-6 water molecules. Total binding energies predicted at lower levels of theory are compared with those from the high level G3 calculations, whereas the sequential binding energies are compared with available experimental values. An increase in the quality of the basis set from double-zeta to triple-zeta has a significant effect on the sequential binding energies, irrespective of the geometries used. Within the same group (I or II), the sequential binding energy predictions at the MP2 and B3LYP vary appreciably. We noticed that, for each addition of a water molecule, the change of the M-O distance in metal-water clusters is higher at the B3LYP than at the MP2 level. The charge of the metal ion decreases monotonically as the number of water molecules increase in the complex. 相似文献
2.
In the present work, a theoretical study of the cryptand 4, 7, 13, 16, 21, 24-hexaoxa-1, 10- diazabicyclo [8,8,8] hexacosan (the named [222]) and the cryptand 5, 6-benzo-4, 7, 13, 16, 21, 24-hexaoxa-1, 10-diazabicyclo [8, 8, 8] hexacosan (the nemed [222B]) had been done using density functional theory (DFT) with B3LYP/6-31G* method in order to obtain the electronic and geometrical structure of the cryptands and their complexes with alkali metal ions: Li(+), Na(+), and K(+). The nucleophilicity of cryptands had been investigated by the Fukui function. For complexes, the match between cation and cavity size, the status of interaction between alkali metal ions and donor atoms in the cryptands and the rigidity of the cryptands had been analyzed through the other calculated parameters. In addition, the enthalpies of complexation reaction and cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results are in a good agreement with the experimental data for the complexes. 相似文献
3.
The structures and energies of complexes obtained upon interaction between glutathione (GSH) and alkali (Li+, Na+, K+), or alkaline earth metal (Be2+, Mg2+, Ca2+), or group IIIA (Al3+) cations were studied using quantum chemical density functional theory. The characteristics of the interactions between GSH and the metal cations at different nucleophilic sites of GSH were examined selecting systematically, both mono- and multi-coordinating were taken into account. The results indicated that the heteroatom of GSH, the radius and charge of metal ion, and the coordination number of the metal cation with the ligand played important roles in determining the stability of these complexes. Moreover, the intramolecular hydrogen migration in GSH could be promoted by the metal cations during coordination reaction. Furthermore, the Al3+ cation might catalyze the decarboxylation reaction and stimulate the formation of covalent bond between S atom and adjacent O atom of GSH. 相似文献
4.
Disha Anchaliya Uma Sharma 《Journal of inclusion phenomena and macrocyclic chemistry》2014,79(3-4):465-471
The synthetic model systems based on the study of supramolecular compounds are proficient in mimicking the biological processes so as to get the insight of their processes. In this perspective, a series of naphthaquinone derived redox switchable ionophores namely D1 (2,3,5,6,8,9,11,12-octahydronaphtho [2,3b] [1,4,7,10,13] pentaoxacyclo octadecine-14,19-dione) and D2 (2,3,5,6,8,9-hexahydronaphtho[2,3-b] [1,4,7,10] tetraoxacyclododecine-11,16-dione) have been synthesized and interacted with Li+, Na+, K+, Ca2+, Mg2+ cations. The isolated solid state soft materials obtained after interaction were characterized by melting point, TLC, 1H NMR spectroscopy and CHN estimation. The extraction, transport potential and stability constant determination of these ionophores towards cations helped in investigating their binding strength in solution. The selective extraction of Na+ and Li+ by D1 and D2 correspondingly proves them an efficient compound for the manufacturing of chemosensor. Whereas efficient transport of Mg2+ by both the ionophores especially by D1 may assist in developing biomodels for understanding its transport through membrane in living system. The selectivity of these ionophores towards metal ions can be modulated by molecular tailoring. 相似文献
5.
6.
7.
Pinggui Yi Zhengjun Liu Zhaoxu Wang Xianyong Yu Jiming Zhou Bo Hou Qingzhong Li 《International journal of quantum chemistry》2013,113(9):1316-1324
Density functional theory calculations were performed at the B3LYP/6‐311++G(d,p) level to systematically explore the geometrical multiplicity and binding strength for the complexes formed by alkaline and alkaline earth metal cations, viz. Li+, Na+, K+, Be2+, Mg2+, and Ca2+ (Mn+, hereinafter), with 2‐(3′‐hydroxy‐2′‐pyridyl)benzoxazole. A total of 60 initial structures were designed and optimized, of which 51 optimized structures were found, which could be divided into two different types: monodentate complexes and bidentate complexes. In the cation‐heteroatom complex, bidentate binding is generally stronger than monodentate binding, and of which the bidentate binding with five‐membered ring structure has the strongest interaction. Energy decomposition revealed that the total binding energies mainly come from electrostatic interaction for alkaline metal ion complexes and orbital interaction energy for alkaline earth metal ion complex. In addition, the electron localization function analysis show that only the Be? O and Be? N bond are covalent character, and others are ionic character. © 2012 Wiley Periodicals, Inc. 相似文献
8.
9.
Xiao‐Li Yuan Xin‐Lu Cheng Xin‐Fang Su 《International journal of quantum chemistry》2009,109(5):972-981
Density functional theory calculation was carried out on cation‐π complexes formed by cations [M = H+, Li+, Na+, K+, Be2+, Mg2+, and Ca2+] and π systems of annelated benzene. The cation‐π bonding energy of Be2+ or Mg2+ with annelated benzene is very strong in comparison with the common cation‐π intermolecular interaction, and the bonding energies follow the order Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+. Similarly, the interaction energies follow the trend 1‐M < 2‐M < 3‐M for all the metal cations considered. These outcomes may be due to the weak interactions of the metal cations with C? H and the interactions of metal cations with π in addition to the nature of a metal cation. We have also investigated on all the possible substituted sites, and find that the metal ion tends to interact with all ring atoms while proton prefers to bind covalently to one of the ring carbons. The binding of metal cations with annelated benzenes has striking effect on nuclear magnetic resonance chemical shifts using the gauge independent atomic orbital method. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 相似文献
10.
Azadeh Khanmohammadi Heidar Raissi Fariba Mollania Lila Hokmabadi 《Structural chemistry》2014,25(5):1327-1342
Cation–π complexes between several cations (Li+, Na+, K+, Be2+, Mg2+, and Ca2+) and different π-systems such as para-substituted (F, Cl, OH, SH, CH3, and NH2) benzene derivatives have been investigated by UB3LYP method using 6-311++G** basis set in the gas phase and the water solution. The ions have shown cation–π interaction with the aromatic motifs. Vibrational frequencies and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules are also used to elucidate the interaction characteristics of the investigated complexes. The aromaticity is measured using several well-established indices of aromaticity such as NICS, HOMA, PDI, FLU, and FLUπ. The MEP is given the visual representation of the chemically active sites and comparative reactivity of atoms. Furthermore, the effects of interactions on NMR data have been used to more investigation of the studied compounds. 相似文献
11.
12.
《印度化学会志》2023,100(8):101059
In recent years, the chelation between quercetin and transition metals has attracted much attention because the complexes formed have higher antioxidant and medicinal activities. However, the theoretical investigation of the mechanisms of flavonoid functioning along with the structures of quercetin–metal complexes is still not sufficiently studied. In this research work, quercetin–complexes with Na+, K+, Mg2+, Ca2+, and Al3+ are studied theoretically by using density functional theory (DFT) method in order to investigate the stability, reactivity, nature of interaction, and the application of the quercetin-metal complexes as potential antioxidants. From the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) results, the K-quercetin salt was observed to be more stable as compared to the other metals while Ca seemed to be the most reactive with the least values in the neutral form of the metal - quercetin interaction. The results of the antioxidant activity in the neutral state present Ca and Mg to have the higher values of ionization potential (IP) indicating that the antioxidant activity of Ca/Mg complexes with quercetin are less pronounced, while K-complex with the least value indicating the higher the electron donating reactivity. In comparison, it is worth to note that Mg-Q and Ca-Q in the deprotonated state of quercetin showcase lower IP, higher ability of H-atom transfer and electron transfer reactivity, therefore, better antioxidant candidates of the quercetin complexes than their other counterparts. 相似文献
13.
Xiaoyan Zheng Xueye Wang Shanfeng Yi Nuanqing Wang Yueming Peng 《Journal of computational chemistry》2009,30(16):2674-2683
In this work, a quantum mechanical research of five lariat crown ethers(LCEs), 2‐methoxy‐15‐crown‐5( A ), N‐methoxy‐4‐aza‐15‐crown‐5( B ), N‐methoxy‐4‐aza‐18‐crown‐6( C ), N‐methoxyethyl‐4‐aza‐18‐crown‐6( D ), N,N′‐bis(2‐metho xyethyl)‐4,13‐diaza‐18‐crown‐6( E ), which are based on either 15‐crown‐5 or 18‐crown‐6 frameworks and contain various pendant arms extending from either carbon or nitrogen atoms on the crown frameworks, had been done using density functional theory with B3LYP/6‐31G* method to obtain the electronic and geometrical structures of the LCEs and their complexes with alkali metal ions: Na+ and K+. The nucleophilicity of LCEs had been investigated by the Fukui functions. For complexes, the match between the cation and cavity size, the status of interaction between alkali metal ions and donor atoms in the LCEs, and the sidearm effect of the LCEs had been analyzed through the other calculated parameters, such as, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, and energy gaps. In addition, the enthalpies of complexation reaction had been studied by the calculated thermodynamic data (298 K). The calculated results are all in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009 相似文献
14.
在B3LYP/6-311++G**水平上用极化连续介质模型(PCM)系统研究了金属离子(M+/2+=Na+,K+,Ca2+,Mg2+,Zn2+)和十三种鸟嘌呤异构体形成的配合物GnxM+/2+(n为鸟嘌呤异构体的编号,x表示M+/2+与鸟嘌呤异构体的结合位点)在气(g)液(a)两相中的稳定性顺序.着重探讨了液相中配合物的稳定性差异,并且从溶质-溶剂效应、结合能、形变能及异构体的相对能量等几个方面分析了造成稳定顺序发生变化的原因.报道了溶液中这五种金属离子与鸟嘌呤异构体结合形成的六种基态配合物:aG1N2,N3Na+,aG1N2,N3K+,aG1O6,N7Ca2+,aG1N2,N3Mg2+(aG1O6,N7Mg2+),aG2N3,N9Zn2+.可以看出,除了在Zn2+配合物中鸟嘌呤异构体为G2外,构成其余四种金属离子配合物的鸟嘌呤异构体都是G1,但结合位点不同.同时对气相中各类配合物稳定性也进行了系统的排序,并报道了几种较稳定的配合物,如:gG3N1,O6K+,gG5N1,O6K+,gG3N1,O6Ca2+/Mg2+,gG4O6,N7Ca2+/Mg2+. 相似文献
15.
啤酒酵母生理代谢过程中钠、钾、镁、钙离子含量变化的跟踪检测 总被引:5,自引:0,他引:5
采用空气-乙炔火焰原子吸收光谱法分别测定了啤酒酵母发酵液中的Na^ 、K^ 、Mg^2 、Ca^2 离子动态变化中的含量,用La^3 盐消除P对Ca^3 的干扰,以Sr^2 盐作为Na^ 、K^ 的消电离剂。本实验室采用配制培养基,通过对不同种类及不同发酵阶段培养的发酵液样品进行测定,以研究在啤酒酵母生长代谢过程中Na^ 、K^ 、Mg^2 、Ca^2 离子代谢动态变化。方法的Na^ 、K^ 、Mg^2 、Ca^2 相对标准偏差(RSD)分别为0.31%,0.73%。1.78%,0.28%;样品加标回收率为98%-107%;检出限:Na^ 为0.159mg/L,K^ 为0.789nag/L,Mg^2 为0.039mg/L,Ca^2 为0.029mg/L。该方法简便快速,具有很好的精密度。 相似文献
16.
Allen RN Lipkowski P Shukla MK Leszczynski J 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,68(3):639-645
Vibrational frequency analysis was performed for the complexes of alkali metal cations (Li+, Na+ and K+) with urate in the gas phase. The geometries of all possible metal cation-urate complexes were optimized at the B3LYP/6-311++G(d,p) level. The most stable complex corresponding to the each cation was used for the vibrational frequency analysis including the computation of % potential energy distribution (%PED). For comparison, the vibrational frequency analysis was also performed for the uric acid. The computed results are discussed in terms of the available experimental data. It was revealed that the characteristic stretching vibrational modes corresponding to the metal cation and the interacting nucleophilic sites of urate can be used to identify metals involved in the stone formation in the living system. Changes in different vibrational frequencies of uric acid consequent to the metal cation interactions are discussed. 相似文献
17.
In an attempt to account for the preferential binding to nonactin of K+ relative to Na+, theoretical computations are performed using the intermolecular interaction energies of the ionophore with the two cations. Both K+ and Na+ liganding conformations are considered, and an evaluation is made of the intramolecular energy expenditure caused by the reduction of the size of the cavity. The energy balance for the complexation of the two cations computed by taking into account the cation–ionophore interactions, the interactions between the liganding groups, as well as the desolvation enthalpies of the cations in methanol, favors K+ over Na+ by 4 to 5 kcal/mol, in fair agreement with the difference in the measured enthalpies of binding. The binding of NH to nonactin is also investigated. 相似文献
18.
19.
《Mendeleev Communications》2023,33(2):215-217
The local mobility and diffusion of Li+, Na+, and Cs+ cations in Nafion 117 membrane were explored by 7Li, 23Na, and 133Cs spin relaxation and pulsed field gradient NMR techniques. It was shown that the macroscopic mass transfer of cations is controlled by ion motion near sulfonate groups. Lithium and sodium cations, whose hydrated energy is higher than the water hydrogen bond energy, are moving together with water molecules, but cesium cations possessing a low hydrated energy are jumping directly between the neighboring sulfonate groups. 相似文献
20.
The geometric structures, the interaction energies, the vibrational characteristics, and the electronic structures of the complexes of the isoguanine (isoG) quintet coordinated with mono valent cations (Na(+), K(+), Rb(+), and Cs(+)) have been studied based on the nonplanar models. The geometry of the local minimum structure of the Na(+)-isoG quintet complex deviates significantly from the planar structure. The geometric characteristics of the Na(+)-isoG quintet complex support the experimental findings that Na(+) is unlikely to induce the formation of the isoG quintet-based pentaplexes. Similar to the guanine tetraplexes, the ionic selectivity of the isoG quintet-based pentaplexes is largely dominated by the hydration energy of the cations. After hydration correction, the positive value of the free energy difference for the formation of the Na(+)-isoG quintet complex (DeltaG(f)) suggests that the isoG quintet is unable to capture the hydrated Na(+). The negative values of DeltaG(f) for the K(+) and Rb(+) complexes implies that both ions have the tendency to be inserted into the isoG pentaplexes. This study suggests that, to elucidate the high Cs(+) selectivity of isoG pentaplexes, it is necessary to extend the model from the isoG quintet to the isoG decamer. 相似文献