首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the manganocene ion, Cp(2)Mn(+) (Cp = eta(5)-cyclopentadienyl). The Cp loss reaction was found to be extremely slow over a large ion internal energy range. By simulating the measured asymmetric time-of-flight peak shapes and breakdown diagram, the 0 K thermochemical dissociation limit for CpMn(+) production was determined to be 9.55 +/- 0.15 eV. A CpMn(+)-Cp bond energy of 3.43 eV was obtained by combining this CpMn(+) + Cp dissociation limit with the Cp(2)Mn adiabatic ionization energy of 6.12 +/- 0.07 eV. Combining the measured onset with known heats of formation of Cp and Mn(+), the Cp-Mn(+) bond energy was determined to be 3.38 +/- 0.15 eV. These results lead to 298 K heats of formation of Cp(2)Mn(+) and CpMn(+) of 863 +/- 7 and 935 +/- 16 kJ/mol, respectively. Finally, by combining these results with a previous measurement of the CpMn(CO)(3) --> CpMn(+) + 3CO + e(-) dissociation limit, we arrive at a new value for Delta(f)H degrees (298K)(CpMn(CO)(3)) of -424 +/- 17 kJ/mol.  相似文献   

2.
A guided-ion beam tandem mass spectrometer is used to study the reactions of Pt(+) with methane, PtCH(2)(+) with H(2) and D(2), and collision-induced dissociation of PtCH(4)(+) and PtCH(2)(+) with Xe. These studies experimentally probe the potential energy surface for the activation of methane by Pt(+). For the reaction of Pt(+) with methane, dehydrogenation to form PtCH(2)(+) + H(2) is exothermic, efficient, and the only process observed at low energies. PtH(+), formed in a simple C-H bond cleavage, dominates the product spectrum at high energies. The observation of a PtH(2)(+) product provides evidence that methane activation proceeds via a (H)(2)PtCH(2)(+) intermediate. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies in eV (kJ/mol) of D(0)(Pt(+)-H) = 2.81 +/- 0.05 (271 +/- 5), D(0)(Pt(+)-2H) = 6.00 +/- 0.12 (579 +/- 12), D(0)(Pt(+)-C) = 5.43 +/- 0.05 (524 +/- 5), D(0)(Pt(+)-CH) = 5.56 +/- 0.10 (536 +/- 10), and D(0)(Pt(+)-CH(3)) = 2.67 +/- 0.08 (258 +/- 8). D(0)(Pt(+)-CH(2)) = 4.80 +/- 0.03 eV (463 +/- 3 kJ/mol) is determined by measuring the forward and reverse reaction rates for Pt(+) + CH(4) right harpoon over left harpoon PtCH(2)(+) + H(2) at thermal energy. We find extensive hydrogen scrambling in the reaction of PtCH(2)(+) with D(2). Collision-induced dissociation (CID) of PtCH(4)(+), identified as the H-Pt(+)-CH(3) intermediate, with Xe reveals a bond energy of 1.77 +/- 0.08 eV (171 +/- 8 kJ/mol) relative to Pt(+) + CH(4). The experimental thermochemistry is favorably compared with density functional theory calculations (B3LYP using several basis sets), which also establish the electronic structures of these species and provide insight into the reaction mechanism. Results for the reaction of Pt(+) with methane are compared with those for the analogous palladium system and the differences in reactivity and mechanism are discussed.  相似文献   

3.
The energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.9 +/- 2.0 kJ x mol(-1) and Delta(f)(4-OHBA, cr) = -597.2 +/- 1.4 kJ x mol(-1), by combustion calorimetry. Calvet drop-sublimation calorimetric measurements on monoclinic samples of 2-, 3-, and 4-OHBA, led to the following enthalpy of sublimation values at 298.15 K: Delta(sub)(2-OHBA) = 94.4 +/- 0.4 kJ x mol(-1), Delta(sub)(3-OHBA) = 118.3 +/- 1.1 kJ x mol(-1), and Delta(sub)(4-OHBA) = 117.0 +/- 0.5 kJ x mol(-1). From the obtained Delta(f)(cr) and Delta(sub) values and the previously reported enthalpy of formation of monoclinic 2-OHBA (-591.7 +/- 1.3 kJ x mol(-1)), it was possible to derive Delta(f)(2-OHBA, g) = -497.3 +/- 1.4 kJ x mol(-1), Delta(f)(3-OHBA, g) = -475.6 +/- 2.3 kJ x mol(-1), and Delta(f)(4-OHBA, cr) = -480.2 +/- 1.5 kJ x mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3PW91/aug-cc-pVDZ, MPW1PW91/aug-cc-pVDZ, and MPW1PW91/aug-cc-pVTZ) and the CBS-QMPW1 methods, were used to derive the enthalpies of formation of the gaseous 2-, 3-, and 4-carboxyphenoxyl radicals as (2-HOOCC(6)H(4)O(*), g) = -322.5 +/- 3.0 kJ.mol(-1) Delta(f)(3-HOOCC(6)H(4)O(*), g) = -310.0 +/- 3.0 kJ x mol(-1), and Delta(f)(4-HOOCC(6)H(4)O(*), g) = -318.2 +/- 3.0 kJ x mol(-1). The O-H bond dissociation enthalpies in 2-OHBA, 3-OHBA, and 4-OHBA were 392.8 +/- 3.3, 383.6 +/- 3.8, and 380.0 +/- 3.4 kJ x mol(-1), respectively. Finally, by using the ortho-para method, it was found that the H- - -O intramolecular hydrogen bond in the 2-carboxyphenoxyl radical is 25.7 kJ x mol(-1), which is ca. 6-9 kJ x mol(-1) above the one estimated in its parent (2-OHBA), viz. 20.2 kJ x mol(-1) (theoretical) or 17.1 +/- 2.1 kJ x mol(-1) (experimental).  相似文献   

4.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

5.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the cyclopentadienyl manganese tricarbonyl ion, CpMn(CO)(3)(+). The ionization energy of CpMn(CO)(3) was measured from the threshold photoelectron spectrum to be 7.69 +/- 0.02 eV. The dissociation of the CpMn(CO)(3)(+) ion proceeds by the sequential loss of three CO molecules. The first and third CO loss reactions were observed to be slow (lifetimes in the microsecond range). By simulating the resulting asymmetric time-of-flight peak shapes and breakdown diagram, 0 K onsets for three product ions were determined to be 8.80 +/- 0.04, 9.43 +/- 0.04, and 10.51 +/- 0.06 eV, respectively. Combined with the adiabatic ionization energy, the three successive Mn-CO bond energies in the CpMn(CO)(3)(+) were found to be alternating with values of 1.11 +/- 0.04, 0.63 +/- 0.04, and 1.08 +/- 0.06 eV, respectively. Using a scaled theoretical Cp-Mn(+) bond energy of 3.10 +/- 0.10 eV and the combined results from theory and experiment, the 298 K gas-phase heat of formation of CpMn(CO)(3) is suggested to be -419 +/- 15 kJ/mol. Based on this value, the 298 K heats of formation of CpMn(CO)(3)(+), CpMn(CO)(2)(+), CpMnCO(+), and CpMn(+) are 325 +/- 15, 546 +/- 15, 719 +/- 15, and 938 +/- 15 kJ/mol, respectively. By scaling theoretical calculated neutral bond energies with the experimental information derived in this study, the successive Mn-CO bond energies were estimated to be 1.88, 1.10, and 1.03 eV, respectively, while the Cp-Mn bond energy was found to be 2.16 eV. Comparison between the quantum chemical calculations and experimental values shows that the loss of CO groups follows the lowest energy adiabatic path, in which electronic spin on the metal center is not conserved.  相似文献   

6.
Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements provide the first directly measured ionization energy for PtC, IE(PtC) = 9.45 +/- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +/- 0.1 eV and IE(PtO2) = 11.35 +/- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +/- 0.07 eV, D0(Pt-O) = 4.30 +/- 0.12 eV, and D0(OPt-O) = 4.41 +/- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules DeltaH(0)(f,0)(PtC(g)) = 701 +/- 7 kJ/mol, DeltaH(0)(f,0)(PtO(g)) = 396 +/- 12 kJ/mol, and DeltaH(0)(f,0)(PtO2(g)) = 218 +/- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.  相似文献   

7.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

8.
The unimolecular dissociation reactions of the methylhydrazine (MH) and tetramethylhydrazine (TMH) radical cations have been investigated using tandem mass spectrometry and threshold photoelectron photoion coincidence spectroscopy in the photon energy ranges 9.60-31.95 eV (for the MH ion) and 7.74-29.94 eV (for the TMH ion). Methylhydrazine ions (CH3NHNH2(+*)) have three low-energy dissociation channels: hydrogen atom loss to form CH2NHNH2(+) (m/z 45), loss of a methyl radical to form NHNH2(+) (m/z 31), and loss of methane to form the fragment ion m/z 30, N2H2(+*). Tetramethylhydrazine ions only exhibit two dissociation reactions near threshold: that of methyl radical loss to form (CH3)2NNCH3(+) (m/z 73) and of methane loss to form the fragment ion m/z 72 with the empirical formula C3H8N2(+*). The experimental breakdown curves were modeled with Rice-Ramsperger-Kassel-Marcus theory, and it was found that, particularly for methyl radical loss, variational transition state theory was needed to obtain satisfactory fits to the data. The 0 K enthalpies of formation (delta(f)H0) for all fragment ions (m/z 73, m/z 72, m/z 45, m/z 31, and m/z 30) have been determined from the 0 K activation energies (E0) obtained from the fitting procedure: delta(f)H0[(CH3)2NNCH3(+)] = 833 +/- 5 kJ mol(-1), delta(f)H0 [C3H8N2(+*)] = 1064 +/- 5 kJ mol(-1), delta(f)H0[CH2NHNH2(+)] = 862 +/- 5 kJ mol(-1), delta(f)H0[NHNH2(+)] = 959 +/- 5 kJ mol(-1), and delta(f)H0[N2H2(+*)] = 1155 +/- 5 kJ mol(-1). The breakdown curves have been measured from threshold up to h nu approximately 32 eV for both hydrazine ions. As the photon energy increases, other dissociation products are observed and their appearance energies are reported.  相似文献   

9.
Knudsen cell mass spectrometry was applied to the evaluation of the ionization efficiency curves for the ions originating from CoF(4) molecules. Cobalt tetrafluoride was obtained in the gas phase over the CoF(3)(s)-TbF(4)(s) system in the temperature range from 640 to 690 K. From the ionization efficiency curves the appearance energies of the ions formed from the CoF(4) molecules were determined by means of Vogt's deconvolution method. Clausius-Clapeyron plots for the ions from CoF(4) molecules were measured. Evaporation of pure CoF(3)(s) was carried out, and the appearance energies of the ions formed from CoF(3) molecules were determined. The ionization energies for CoF(4) and CoF(3) molecules were found to be (14.3 +/- 0.2) and (13.3 +/- 0.1) eV, respectively.  相似文献   

10.
The dissociation of energy-selected ND(3) (+) to form ND(2) (+)+D near its threshold has been investigated using the pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method. The breakdown curves for ND(3) (+) and ND(2) (+) give a value of 15.891+/-0.001 eV for the 0 K dissociation threshold or appearance energy (AE) for ND(2) (+) from ND(3). We have also measured the PFI-PE vibrational bands for ND(3) (+)(X;v(2) (+)=0, 1, 2, and 3), revealing partially resolved rotational structures. The simulation of these bands yields precise ionization energies (IEs) for ND(3) (+) X(0,v(2) (+)=0-3,0,0)<--ND(3) X(0,0,0,0). Using the 0 K AE (ND(2) (+)) and IE(ND(3))=10.200+/-0.001 eV determined in the present study, together with the known 0 K bond dissociation energy for ND(3) [D(0)(D-ND(2))=4.7126+/-0.0025 eV], we have determined the D(0)(ND(2) (+)-D), IE(ND(2)), and 0 K heat of formation for ND(2) (+) to be 5.691+/-0.001 eV, 11.1784+/-0.0025 eV, and 1261.82+/-0.4 kJ/mol, respectively. The PFI-PE spectrum is found to exhibit a steplike feature near the AE(ND(2) (+)), indicating that the dissociation of excited ND(3) (+) at energies slightly above the dissociation threshold is prompt, occurring in the time scale 相似文献   

11.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

12.
The intermetallic molecules AuBe and AuCa were identified by means of the Knudsen-Effusion Mass Spectrometry technique in the high-temperature vapors produced by vaporizing Au-Be-Ca alloys of proper composition. The gaseous equilibria AuBe(g)+Au(g)=Au(2)(g)+Be(g) and AuCa(g)+Au(g)=Au(2)(g)+Ca(g) were studied in the temperature ranges 1720-1841 K and 1669-1841 K, respectively, by monitoring the partial pressures of all the species involved. The equilibrium data were analyzed by the third-law method, obtaining for the first time the dissociation energy D(0) ( composite function) of the two intermetallic species: D(0) ( composite function)(AuBe)=234.0+/-4.0 kJ/mol; D(0) ( composite function)(AuCa)=246.7+/-4.0 kJ/mol. These values are significantly higher than the recently published D(0) ( composite function) of the species AuMg (175.4+/-2.7 kJ/mol). Furthermore, the ionization energies (IE) of AuBe, AuMg, and AuCa were obtained by measuring the electron impact ionization efficiency curves, IE(AuBe)=7.5+/-0.3 eV, IE(AuMg)=6.7+/-0.3 eV, and IE(AuCa)=5.5+/-0.3 eV. Theoretical calculations were also carried out for these species by density functional theory methods (PW91 and BP86) used in conjunction with Stuttgart relativistic effective core potentials. Both functionals were found to perform very well in reproducing experimental D(0) ( composite function), IE, and molecular parameters.  相似文献   

13.
The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.  相似文献   

14.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited ?(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the ? ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).  相似文献   

15.
By employing the high-resolution pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method, we have examined the unimolecular dissociation reaction of energy-selected C(2)H(3)Br(+) to form C(2)H(3) (+)+Br near its threshold. The analysis of the breakdown curves for C(2)H(3)Br(+) and C(2)H(3) (+) yields a value of 11.9010+/-0.0015 eV for the 0 K dissociative photoionization threshold or appearance energy (AE) for C(2)H(3) (+) from C(2)H(3)Br. This AE(C(2)H(3) (+)) value, together with the ionization energy (IE) for C(2)H(3)Br (9.8200+/-0.0015 eV) obtained by PFI-PE and threshold photoelectron (TPE) measurements, has allowed the determination of the 0 K dissociation energy (D(0)) for the C(2)H(3) (+)-Br bond to be 2.081+/-0.002 eV. The 0 K AE(C(2)H(3) (+)) from C(2)H(3)Br obtained in this study corresponds to DeltaH(f0) ( composite function )(C(2)H(3) (+))=1123.7+/-1.9 kJ/mol. Combining the latter value and the known DeltaH(f0) ( composite function )(C(2)H(3))=306.7+/-2.1 kJ/mol, we calculated a value of 8.468+/-0.029 eV for the IE(C(2)H(3)), which is in accord with the result obtained in the previous photoionization efficiency study. We have also carried out high-level ab initio calculations for the IE(C(2)H(3)) at the Gaussian-3 and the CCSD(T,full)/CBS level of theory. The CCSD(T,full)/CBS prediction of 8.487 eV for the IE(C(2)H(3)-->bridged-C(2)H(3) (+)) is in good agreement with the IE(C(2)H(3)) value derived in the present experiment. Combining the 0 K AE(C(2)H(3) (+))=11.9010+/-0.0015 eV and the IE(C(2)H(3))=8.468+/-0.029 eV yields the value of 3.433+/-0.029 eV for D(0)(C(2)H(3)-Br). We have also recorded the TPE spectrum of C(2)H(3)Br in the energy range of 9.80-12.20 eV. Members (n=5-14) of four autoionizing Rydberg series converging to the C(2)H(3)Br(+)(A (2)A(')) state are observed in the TPE spectrum. The analysis of the converging limit of these Rydberg series and the vibrational TPE bands for C(2)H(3)Br(+)(A (2)A(')) has provided more precise values for the nu(6) (+) (1217+/-10 cm(-1)) and nu(8) (+) (478+/-8 cm(-1)) modes and the IE (10.9156+/-0.0010 eV) for the formation of C(2)H(3)Br(+)(A (2)A(')) from C(2)H(3)Br.  相似文献   

16.
The effect of temperature and pressure on the water exchange reaction of [Fe(II)(NTA)(H2O)2](-) and [Fe(II)(BADA)(H2O)2](-) (NTA = nitrilotriacetate; BADA = beta-alanindiacetate) was studied by 17O NMR spectroscopy. The [Fe(II)(NTA)(H2O)2](-) complex showed a water exchange rate constant, k(ex), of (3.1 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the observed reaction are 43.4 +/- 2.6 kJ mol(-1), + 25 +/- 9 J K(-1) mol(-1) and + 13.2 +/- 0.6 cm(3) mol(-1), respectively. For [Fe(II)(BADA)(H2O)2](-), the water exchange reaction is faster than for the [Fe(II)(NTA)(H2O)2](-) complex with k(ex) = (7.4 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the water exchange reaction are 40.3 +/- 2.5 kJ mol(-1), + 22 +/- 9 J K(-1) mol(-1) and + 13.3 +/- 0.8 cm(3) mol(-1), respectively. The effect of pressure on the exchange rate constant is large and very similar for both systems, and the numerical values for DeltaV( not equal) suggest in both cases a limiting dissociative (D) mechanism for the water exchange process.  相似文献   

17.
Structural isomers of [UO(2)(oxalate)(3)](4-), [UO(2)(oxalate)F(3)](3-), [UO(2)(oxalate)(2)F](3-), and [UO(2)(oxalate)(2)(H(2)O)](2-) have been studied by using EXAFS and quantum chemical ab initio methods. Theoretical structures and their relative energies were determined in the gas phase and in water using the CPCM model. The most stable isomers according to the quantum chemical calculations have geometries consistent with the EXAFS data, and the difference between measured and calculated bond distances is generally less than 0.05 A. The complex [UO(2)(oxalate)(3)](4-) contains two oxalate ligands forming five-membered chelate rings, while the third is bonded end-on to a single carboxylate oxygen. The most stable isomer of the other two complexes also contains the same type of chelate-bonded oxalate ligands. The activation energy for ring opening in [UO(2)(oxalate)F(3)](3-), deltaU++ = 63 kJ/mol, is in fair agreement with the experimental activation enthalpy, deltaH++ = 45 +/- 5 kJ/mol, for different [UO(2)(picolinate)F(3)](2-) complexes, indicating similar ring-opening mechanisms. No direct experimental information is available on intramolecular exchange in [UO(3)(oxalate)(3)](4-). The theoretical results indicate that it takes place via the tris-chelated intermediate with an activation energy of deltaU++ = 38 kJ/mol; the other pathways involve multiple steps and have much higher activation energies. The geometries and energies of dioxouranium(VI) complexes in the gas phase and solvent models differ slightly, with differences in bond distance and energy of typically less than 0.06 A and 10 kJ/mol, respectively. However, there might be a significant difference in the distance between uranium and the leaving/entering group in the transition state, resulting in a systematic error when the gas-phase geometry is used to estimate the activation energy in solution. This systematic error is about 10 kJ/mol and tends to cancel when comparing different pathways.  相似文献   

18.
We present the kinetic energy dependence of reactions of the late third-row transition metal cation Ir(+) with H(2), D(2), and HD measured using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Ir(+) ions in its electronic ground state term and primarily in the ground spin-orbit level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependence of the cross sections for forming IrH(+) and IrD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Ir(+)-H) = 3.12 +/- 0.06 eV. Ab initio calculations at the B3LYP/HW+/6-311+G(3p), BHLYP/HW+/6-311+G(3p), and QCISD(T)/HW+/6-311+G(3p) levels performed here show reasonable agreement with the experimental bond energies and with the previous theoretical values available. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with those of the first-row and second-row congeners Co(+) and Rh(+). We find that Ir(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanisms and indicate that Ir(+) reacts largely via an insertion mechanism, in contrast with the lighter group 9 metal ions Co(+) and Rh(+) which react via direct mechanisms.  相似文献   

19.
Two new one-dimensional zigzag chain coordination polymers,[Co(hfipbb)(2,2'-bpy)(H2O)2]n 1 and [Co(hfipbb)(1,10-phen)(H2O)]n 2,have been synthesized under hydrother-mal reactions from CoCl2.6H2O,4,4'-(hexafluoroisopropylidene)bis(benzoic acid) and 2,2' -bipyridine or 1,10-phenanthroline ligands,respectively. Single-crystal X-ray analyses revealed that the zigzag chains of 1 and 2 are linked into three-dimensional supramolecular networks by both O-H···O hydrogen-bonds and π···π stacking interactions. Crystal data for 1:C27H20CoF6N2O6,Mr=641.38,orthorhombic,space group Pnna,a=9.3820(19),b=27.366(6),c=10.106(2) ,V=2594.8(9) 3,Z=4,Dc=1.642 g/cm3,F(000)=1300,μ=0.752 mm-1,R=0.0311 and wR=0.0924. Crystal data for 2:C29H18CoF6N2O5,Mr=647.38,monoclinic,space group P21/n,a=7.7626(16),b=29.446(6),c=11.281(2) ,β=93.98(3)°,V=2572.3(9) 3,Z=4,Dc=1.672 g/cm3,F(000)=1308,μ=0.757 mm-1,R=0.0403 and wR=0.0820.  相似文献   

20.
The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号