首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an ESR and DFT study of the interaction of cucurbiturils CB[6], CB[7], and CB[8] with di-tert-butyl nitroxide ((CH(3))(3)C)(2)NO (DTBN) and with spin adducts of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2-methyl-2-nitrosopropane (MNP). The primary goal was to understand the structural parameters that determine the inclusion mechanism in the CBs using DTBN, a nitroxide with great sensitivity to the local environment. In addition, we focused on the interactions with CBs of the spin adducts DMPO/OH and MNP/CH(2)COOH generated in aqueous CH(3)COOH. A range of interactions between DTBN and CBs was identified for pH 3.2, 7, and 10. No complexation of DTBN with CB[6] was deduced in this pH range. The interaction between DTBN and CB[7] is evident at all pH values: "in" and "out" nitroxides, with (14)N hyperfine splitting, a(N), values of 15.5 and 17.1 G, respectively, were detected by ESR. Interaction of DTBN with CB[8] was also detected for all pH values, and the only species had a(N) = 16.4 G, a result that can be rationalized by an "in" nitroxide in a less hydrophobic environment compared to CB[7]. Computational studies indicated that the DTBN complex with CB[7] is thermodynamically favored compared to that in CB[8]; the orientations of the NO group are parallel to the CB[7] plane and perpendicular to the CB[8] plane (pointing toward the annulus). Addition of sodium ions led to the ESR detection of a three-component complex between CB[7], DTBN, and the cations; the ternary complex was not detected for CB[8]. The DMPO/OH spin adduct was stabilized in the presence of CB[7], but the effect on a(N) was negligible, indicating that the N-O group is located outside the CB cavity. Computational studies indicated more favorable energetics of complexation for DMPO/OH in CB[7] compared to DTBN. An increase of a(N) was detected in the presence of CB[7] for the MNP/CH(2)COOH adduct generated in CH(3)COOH, a result that was assigned to the generation of the three-component radical between the spin adduct, sodium cations, and CB[7].  相似文献   

2.
In this study, we investigated the hydrogen-bond network patterns involving the NO moieties of five small nitroxides in liquid water by analyzing nanosecond scale molecular dynamics trajectories. To this end, we implemented two types of hydrogen-bond definitions, based on electronic structure, using Bader's atoms-in-molecules analysis and based on geometric criteria. In each definition framework, the nitroxide/water hydrogen-bond networks appear very variable from a nitroxide to another. Moreover, each definition clearly leads to a different picture of nitroxide hydration. For instance, the electronic structure-based definition predicts a number of hydrogen bonds around the nitroxide NO moiety usually larger than geometric structure-based ones. One particularly interesting result is that the strength of a nitroxide/water hydrogen bond does not depend on its linearity, leading us to question the relevance of geometric definition based on angular cutoffs to study this type of hydrogen bond. Moreover, none of the hydrogen-bond definitions we consider in the present study is able to quantitatively correlate the strength of nitroxide/water hydrogen-bond networks with the aqueous nitroxide spin properties. This clearly exhibits that the hydrogen-bonding concept is not reliable enough to draw quantitative conclusions concerning such properties.  相似文献   

3.
The effect of CD-inclusion on spin-trapping rates and spin-adduct decay rates for sulfur trioxide radical anion (SO3 ??) was investigated. SO3 ?? radical was produced with UV photolysis of sodium sulfite in basic aqueous solution, and spin-trapped with various spin traps, i.e., PBN (α-phenyl-N-t-butylnitrone), DMPO (5,5-dimethyl pyrroline-1-oxide), and three other phosphoryl DMPO-type spin traps. A modified β-CD, 6-O-α-d-glucosyl-β-cyclodextrin (G-β-CD) having better inclusion properties than β-CD, was employed. Upon adding excess G-β-CD, decay rates of SO3 ?? radical adducts significantly decreased in most spin traps. Half-lives of SO3 ?? radical adducts of phosphoryl spin traps were one to two orders of magnitude longer than that of PBN or DMPO, and the G-β-CD addition further extended the half-life time. The spin traps containing phosphoryl-group all showed higher SO3 ?? trapping rates than those of PBN and DMPO, but two phosphoryl spin traps achieved slower trapping rates by G-β-CD addition. In addition, the structures of CD-inclusion complexes of spin traps were established by means of 1D and 2D NMR measurements. Based on the results, the influences of inclusion on the spin-trapping rate processes and spin-adduct stabilizations were discussed. We conclude that substituents in DMPO-type spin traps may be modified to provide best spin-trapping capabilities in the presence or absence of CD.  相似文献   

4.
Application of the spin trapping technique in intact animals requires an understanding of the stability and distribution of the spin traps and their spin adducts in vivo. We studied the stability of DMPO in vivo in mice using HPLC and the stability of spin adducts of DMPO by EPR in plasma, whole blood, peritoneal fluid, and homogenized heart tissue of the rat. At 15 minutes after intraperitoneal injection DMPO had similar concentrations in the liver, heart, and blood of the mice and 40% remained in the organs 2 hours after the injection. In contrast, the spin adduct DMPO-OH was short lived, with a half-life of 3.0 minutes in plasma, and was not detectable 1 minute after formation in whole blood and homogenized heart tissue. The carbon centered spin adduct DMPO-CH(OH)CH3 was more stable, having half-lives of 16, 11, 3.6, and 0.79 minutes in plasma, peritoneal fluid, whole blood, and homogenized heart tissue, respectively. The spin adduct DMPO-SO3 was sufficiently stable for the adduct to be observed directly from living mice.  相似文献   

5.
Unlike extensively studied diradicals linked by π‐conjugated systems, only a few studies have investigated weakly coupled diradicals linked by an sp3 carbon atom. Herein, we prepared pyrrolidin‐1‐oxyl–(nitronyl nitroxide)‐dyad 5 and pyrrolidin‐1‐oxyl–iminonitroxide‐dyad 6 . From the observed temperature dependence of the magnetic susceptibility, 5 and 6 were determined to be in singlet ground states with 2Jintra/kB=?35.2 K and ?13.6 K, respectively. From these results and theoretical calculations of related diradicals, the spin‐polarization model counting the small spin density of the sp3 carbon atom could be used as a spin‐prediction model.  相似文献   

6.
Spin trapping by 5,5-dimethylpyrroline-N-oxide (DMPO) was used for the detection of radicals in Fenton media in the presence and absence of Nafion perfluorinated ionomers. For ethanol as solvent, the same types of spin adducts were detected in the presence or absence of Nafion. Solvent-derived adducts, DMPO/*OC2H5 and DMPO/*CH(OH)CH3, were identified, and their presence was rationalized by Fe(III)-catalyzed nucleophilic addition of ethanol to the spin trap and hydrogen abstraction by *OH radicals; oxygen radical adducts, DMPO/*O2(-) and DMPO/*OOH, were also detected. In Fenton media with methanol as solvent (and no Nafion), the DMPO/*O2(-) adduct dominated immediately after sample preparation, and a mixture consisting of DMPO/*OCH3, DMPO/*CH3, DMPO/*O2(-), and DMPO/*OOH adducts was detected after 30 min. In the presence of Nafion, only the adduct DMPO/*OH was detected. For water as solvent, only the DMPO/*OH adduct was detected, in both the absence and the presence of Nafion. The full hyperfine tensor components of this adduct were determined in Fenton media in the presence of Nafion with water and methanol as solvents. In Nafion/water exposed to the Fenton reagent at 358 K for 3 h, a DMPO adduct of a carbon-centered radical was also identified and assigned to a Nafion-derived fragment; its exact nature is under investigation. Variations of the 14N and Hbeta hyperfine splittings of a given adduct with the local polarity were key to the identification of some DMPO adducts, in particular DMPO/*O2(-). Both *OOH and O2*- adducts, with different 14N and Hbeta splittings, were detected simultaneously in some samples, for the first time in the spin trapping literature. Comparison with the results of a direct electron spin resonance study of Nafion exposed to the Fenton reagent indicated that spin trapping by DMPO can provide complementary information on the type of radicals present during Nafion degradation. The spin trapping approach described in this paper is limited, however, to systems that do not contain organic solvents.  相似文献   

7.
The reaction of singlet oxygen (1O2) generated by ultraviolet-A (UVA)-visible light (lambda > 330 nm) irradiation of air-saturated solutions of hematoporphyrin with phenolic compounds in the presence of a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), gave an electron spin resonance (ESR) spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO-*OH). In contrast, the ESR signal of 5,5-dimethyl-2-pyrrolidone-N-oxyl, an oxidative product of DMPO, was observed in the absence of phenolic compounds. The ESR signal of DMPO-*OH decreased in the presence of either a *OH scavenger or a quencher of *O2 and under anaerobic conditions, whereas it increased depending on the concentration of DMPO. These results indicate both 1O2- and DMPO-mediated formation of free *OH during the reaction. When DMPO was replaced with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), no DEPMPO adduct of oxygen radical species was obtained. This suggests that 1O2, as an oxidizing agent, reacts little with DEPMPO, in which a strong electron-withdrawing phosphoryl group increases the oxidation potential of DEPMPO compared with DMPO. A linear correlation between the amounts of DMPO-*OH generated and the oxidation potentials of phenolic compounds was observed, suggesting that the electron-donating properties of phenolic compounds contribute to the appearance of *OH. These observations indicate that 1O2 reacts first with DMPO, and the resulting DMPO-1O2 intermediate is immediately decomposed/reduced to give *OH. Phenolic compounds would participate in this reaction as electron donors but would not contribute to the direct conversion of 1O2 to *OH. Furthermore, DEPMPO did not cause the spin-trapping agent-mediated generation of *OH like DMPO did.  相似文献   

8.
Electron spin resonanee (ESR) spin trapping experimenss have been carried out to investigate the mechanism of sulfite oxidation employing 5,5-dimethyl-1-pyrroine-1-oxide (DMPO) as a spin trap. The results show that sulfite autoxidation, catalyzed by Mn(II), involves not only the SO.- 3 radicals but also the .OH radicals. An addition of H2O2 to the sulfite aqueous medium significantly increases the .OH radical formation. This result provides new clues to the chemical mechanism of the sulfite oxidation and the sulfite toxicity.  相似文献   

9.
The 5‐diethoxyphosphonyl‐5‐methyl‐1‐pyrroline N‐oxide superoxide spin adduct (DEPMPO?OOH) is much more persistent (about 15 times) than the 5,5‐dimethyl‐1‐pyrroline N‐oxide superoxide spin adduct (DMPO?OOH). The diethoxyphosphonyl group is bulkier than the methyl group and its electron‐withdrawing effect is much stronger. These two factors could play a role in explaining the different half‐lifetimes of DMPO?OOH and DEPMPO?OOH. The trifluoromethyl and the diethoxyphosphonyl groups show similar electron‐withdrawing effects but have different sizes. We have thus synthesized and studied 5‐methyl‐5‐trifluoromethyl‐1‐pyrroline N‐oxide (5‐TFDMPO), a new trifluoromethyl analogue of DMPO, to compare its spin‐trapping performance with those of DMPO and DEPMPO. 5‐TFDMPO was prepared in a five‐step sequence by means of the Zn/AcOH reductive cyclization of 5,5,5‐trifluoro‐4‐methyl‐4‐nitropentanal, and the geometry of the molecule was estimated by using DFT calculations. The spin‐trapping properties were investigated both in toluene and in aqueous buffer solutions for oxygen‐, sulfur‐, and carbon‐centered radicals. All the spin adducts exhibit slightly different fluorine hyperfine coupling constants, thereby suggesting a hindered rotation of the trifluoromethyl group, which was confirmed by variable‐temperature EPR studies and DFT calculations. In phosphate buffer at pH 7.4, the half‐life of 5‐TFDMPO?OOH is about three times shorter than for DEPMPO?OOH and five times longer than for DMPO?OOH. Our results suggest that the stabilization of the superoxide adducts comes from a delicate balance between steric, electronic, and hydrogen‐bonding effects that involve the β group, the hydroperoxyl moiety, and the nitroxide.  相似文献   

10.
The free radical trapping properties of eight 5-alkoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO) type nitrones and those of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were evaluated for trapping of superoxide anion radicals in the presence of 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD). (1)H-NMR titrations were performed to determine both stoichiometries and binding constants for the diamagnetic nitrone-DM-beta-CD equilibria. EPR titrations were then performed and analyzed using a two-dimensional EPR simulation program affording 1 : 1 and 1 : 2 stoichiometries for the nitroxide spin adducts with DM-beta-CD and the associated binding constants after spin trapping. The nitroxide spin adducts associate more strongly with DM-beta-CD than the nitrones. The ability of the nitrones to trap superoxide, the enhancement of the EPR signal intensity and the supramolecular protection by DM-beta-CD against sodium L-ascorbate reduction were evaluated.  相似文献   

11.
Three structurally related isoindoline‐derived spin labels that have different mobilities were incorporated into duplex DNA to systematically study the effect of motion on orientation‐dependent pulsed electron–electron double resonance (PELDOR) measurements. To that end, a new nitroxide spin label, ExIm U , was synthesized and incorporated into DNA oligonucleotides. ExIm U is the first example of a conformationally unambiguous spin label for nucleic acids, in which the nitroxide N?O bond lies on the same axis as the three single bonds used to attach the otherwise rigid isoindoline‐based spin label to a uridine base. Continuous‐wave (CW) EPR measurements of ExIm U confirm a very high rotational mobility of the spin label in duplex DNA relative to the structurally related spin label Im U , which has restricted mobility due to an intramolecular hydrogen bond. The X‐band CW‐EPR spectra of ExIm U can be used to identify mismatches in duplex DNA. PELDOR distance measurements between pairs of the spin labels Im U , Ox U , and ExIm U in duplex DNA showed a strong angular dependence for Im U , a medium dependence for Ox U , and no orientation effect for ExIm U . Thus, precise distances can be extracted from ExIm U without having to take orientational effects into account.  相似文献   

12.
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio‐macromolecules using 19F nuclear spins and nitroxide radicals in combination with high‐frequency (94 GHz/3.4 T) electron–nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19F label enables to access distances up to about 1.5 nm with an accuracy of 0.1–1 Å. The experiment is not limited by the size of the bio‐macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin‐labelled RNA duplexes. The results demonstrate that our simple but strategic spin‐labelling procedure combined with state‐of‐the‐art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.  相似文献   

13.
The technique of spin trapping with nitrone spin traps nas gained wide acceptance as a method for estimating·OH yields in ESR studies. In our study, fast optical kinetic techniques applied to a series of these traps (PBN, 2-PyBN, 3-PyBN, 4-PyBN, 3-PyOBN and 4-PyOBN) reveal relaxation spectra that indicate two absorption maxima with different time constants, with all except 4-PyOBN showing second order behavior. These two spectral regions show different kinetics. Thus, two reaction sites are indicated, only one of which is necessarily a measure of initial · OH when ESR methods are used. One other trap (DMPO) after · OH reaction decays in one mode suggesting that its final product might be useful as a measure of initial · OH. Also, our ESR evidence shows that OH detection can be improved significantly by spin trapping -hydroxyalkyl radicals formed by · OH attack on alcohols.  相似文献   

14.
Due to ability of stable nitroxides to interact with free radicals, they are used as antioxidants for therapeutic and research goals in biology and medicine. A modern trend in medical chemistry is the design of multifunctional molecules such as UV absorbers covalently bound to nitroxides, which provides both UV protection and antioxidant properties combined in the same molecule. In the present work, we report the synthesis of conjugates of a natural UV filter kynurenine (KN) with nitroxides (KN‐RNO conjugates) and the study of their photochemical properties in aqueous and methanol solutions. Due to the spin‐exchange interaction between KN and nitroxide moieties, the triplet lifetimes in conjugates are much shorter than in KN molecule, but the triplet quantum yields are significantly higher. The reaction of intramolecular electron transfer between photoexcited KN and nitroxide moieties is the main factor determining the quantum yield of KN‐RNO conjugates photodecomposition. Consequently, KN‐RNO conjugates in aqueous solution are photochemically less stable than the parent KN molecule. Nevertheless, the photostability of KN‐RNO conjugates is much higher than that of cinnamates which are widely used as UV absorbers in modern sunscreen formulations. Thus, the combination of the endogenous chromophore KN with nitroxides is very promising for medical applications.  相似文献   

15.
The stability of membranes under the strong oxidizing conditions in fuel cells is one of the major challenges in the development of fuel cells based on proton exchange membranes (PEMs). This study is centered on the determination of the susceptibility to degradation of SPEEK membranes exposed to OH radicals, using both direct ESR and spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). In order to achieve a complete picture on SPEEK degradation, two types of experiments were performed: 1. UV irradiation at 77 K of SPEEK membranes swollen by aqueous solutions of H2O2; 2. UV irradiation of SPEEK membranes swollen by aqueous solutions of H2O2 in the presence of DMPO as a spin trap. UV irradiation without oxygen of SPEEK at 77 K in acid or basic form in the presence of H2O2/H2O produced phenoxyl radicals as the predominant radicals detected by direct ESR or spin trapping methods. At pH 4, the oxygen radicals produced phenyl radicals as the predominant species detected by spin trapping methods. The hydroperoxyl radical, as DMPO/OOH adduct, was detected only when the DMPO/OH adduct was absent. The appearance of phenyl and phenoxyl radicals provides the evidence that OH radicals react with the aromatic ring of SPEEK or leading to the scission of its ether bridge.  相似文献   

16.
Stable nitroxide radicals are useful to construct molecular magnetic systems. Particularly, radicals substituted by –COOH and –CONH2 can be coordinated to magnetic metal ions and may be used as cladding reagents of gold nano-particles for modifying magnetism. Nitroxide molecules with unsaturated five-member ring have almost planner structure and electron spin delocalization may be expected. We determined the hyperfine coupling constants (hfcc) of 1H, 2H and 13C of a series of nitroxide radicals with five-member ring. Experimental values of hfcc were compared with those deduced from calculations based on density functional theory. The electron spin density distribution at β position of ring was sensitive to the ring structure, although the electron spin density at β position is small compared with N–O site. Magnetic susceptibility and UV–Vis absorption spectra were also measured and discussed.  相似文献   

17.
The hydroxyl radical (*OH) is an important mediator of biological oxidative stress, and this has stimulated interest in its detection. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and its alkoxycarbonyl and alkoxyphosphoryl analogues have been employed as spin traps for electron paramagnetic resonance (EPR) spectroscopic radical detection. Energies of optimized geometries of nitrones and their corresponding *OH adducts were calculated using density functional theory (DFT) at the B3LYP/6-31+G//B3LYP/6-31G level. Calculations predict that the trans adduct formation is favored in alkoxycarbonyl nitrones, while cis adducts with intramolecular H-bonding is favored for alkoxyphosphoryl nitrones. Addition of *OH to a phosphoryl-substituted nitrone is more exoergic than the carbonylated nitrones. Charge and spin densities on the nitrone spin traps were correlated with their rates of addition with *OH, and results show that the charge density on the nitronyl C, the site of *OH addition, is more positive in phosphorylated nitrones compared to DMPO and the alkoxycarbonyl nitrones. The dihedral angle between the beta-H and nitroxyl O bonds is smaller in phosphorylated nitrones, and that aspect appears to account for the longer half-lives of the spin adducts compared to those in DMPO and alkoxycarbonyl nitrones. Structures of nitrones with trifluoromethyl-, trifluoromethylcarbonyl-, methylsulfonyl-, trifluoromethylsulfonyl-, amido-, spiropentyl-, and spiroester substituents were optimized and their energies compared. Amido and spiroester nitrones were predicted to be the most suitable nitrones for spin trapping of *OH due to the similarity of their thermodynamic and electronic properties to those of alkoxyphosphoryl nitrones. Moreover, dimethoxyphosphoryl substitution at C-5 was found to be the most efficient substitution site for spin trapping of *OH, and their spin adducts are predicted to be the most stable of all of the isomeric forms.  相似文献   

18.
Abstract We have employed EPR and the spin trap 5,5-dimethyi-1-pyrroline N-oxide (DMPO) to investigate the photochemistry of pyridine-2-thione (2-S-PyrH), N-hydroxypyridine-2-thione (2-S-PyrNOH), and its sodium salt, (2-S-PyrNONa), and disulfides, 2,2′-dithiobis (pyridine N-oxide) [(2-S-PyrN→O)2] and 2,2′-dithiodipyridine [(2-S-Pyr),]. We have found that upon UV irradiation they generate aromatic thil radicals, 2–'SPyr and 2–'S-PyrN → O, detected as DMPO adducts, DMPO/2–'S-Pyr ( 1 ) and DMPO/2–'S-PyrN→O (2). In aqueous solution (pH 7) hyperfine splitting constants (hfsc) were determined to be for 1: aN= 14.92 G, aHβ= 16.57 G, and for 2: aN= 14.78 G, aHβ= 16.05 G. In toluene hfsc were 13.09 G, 13.93 G for 1, and 13.25 G, 12.04 G for 2. Irradiation of 2-S-PyrH and DMPO in aerated pH 7 buffer generated the DMPO/-O2,- radical (3a, aN= 14.10 G, aHβ= 11.40 G, aHγ= 1.18 G), while in aerated toluene DMPO/.O2H was formed (adduct 3b, aN= 12.74 G, aHβ= 10.41 G, aHγ= 1.295 G). In both systems adduct 1 was also observed. Because compounds possessing the pyridine-2-thione moiety show antifungal, antibacterial and anticancer properties, it is likely that the ability to photogenerate free radicals may be pertinent to their biological activity.  相似文献   

19.
The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.  相似文献   

20.
Visible light (405–615 nm) excitation of carboquone, mitomycin C, and streptonigrin dissolved in dimethylsulfoxide in the presence of oxygen generates superoxide anion radicals (O2?). The quantum yields for these reactions range from 4.2 times 10?2 (carboquone, λ= 615 ± 10 nm) to 7.3 times 10?6 (streptonigrin, λ=545 ± 10 nm). O2? radicals were spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and identified by electron spin resonance (ESR). The efficiency of DMPO to spin trap O2? in dimethylsulfoxide was determined and indicated that 91% of the O2? present in dimethylsulfoxide is trapped by DMPO. The oxidation of the photoexcited drug molecules occurs via a direct electron transfer to dissolved oxygen in solution. Ultraviolet irradiation (λ= 313 ± 10 nm) of the aminoquinone drug solutions (80% H2O, 20% dimethylsulfoxide) in the presence of peptides results in the decarboxylation of the peptides. In this case the photoexcited drugs are reduced, abstracting an electron from the C-terminal carboxyl group of the peptides. The reaction is specific to the C-terminal amino acid of the peptide. The decarboxylated peptide radicals were spin trapped with 2-methyl-2-nitrosopropane (MNP) and identified by ESR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号