首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The self-excited oscillation of a large aspect ratio planar jet impinging on a flat plate is investigated experimentally at a single transonic jet velocity to clarify the effect of varying the jet thickness on pattern of jet oscillation and frequency of resulting acoustic tone. The study has been performed for a series of jet thicknesses, 1 mm to 4 mm, each of which is tested for the complete range of plate position, i.e. impingement distance, over which acoustic tones are generated. The results reveal that the jet oscillation is controlled by a fluid-dynamic mechanism for small impingement distances, where the hydrodynamic flow instability controls the jet oscillation without any coupling with local acoustic resonances. At larger impingement distances, a fluid-resonant mechanism becomes dominant, in which one of the various hydrodynamic modes of the jet couples with one of the resonant acoustic modes occurring between the jet nozzle and the impingement plate. Within the fluid-resonant regime, the acoustic tones are found to be controlled by the impingement distance, which is the length scale of the acoustic mode, with the jet thickness having only minor effects on the tone frequency. Flow visualization images of the jet oscillation pattern at a constant impingement distance show that the oscillation occurs at the same hydrodynamic mode of the jet despite a four-fold increase in its thickness. Finally, a feedback model has been developed to predict the frequency of acoustic tones, and has been found to yield reasonable predictions over the tested range of impingement distance and nozzle thickness.  相似文献   

2.
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.  相似文献   

3.
This work presents a parametric study and optimization of a single impinging jet with cross flow to enhance heat transfer with two design variables. The fluid flow and heat transfer have been analyzed using three-dimensional compressible Reynolds-averaged Navier–Stokes equations with a uniform heat flux condition being applied to the impingement plate. The aspect ratio of the elliptic jet hole and the angle of inclination of the jet nozzle are chosen as the two design variables, and the area-averaged Nusselt number on a limited target plate is set as the objective function. The effects of the design variables on the heat transfer performance have been evaluated, and the objective function has been found to be more sensitive to the angle of inclination of the jet nozzle than to the aspect ratio of the elliptic jet hole. The optimization has been performed by using the radial basis neural network model. Through the optimization, the area-averaged Nusselt number increased by 7.89% compared to that under the reference geometry.  相似文献   

4.
 The effect of jet inclination of the local heat transfer under an obliquely impinging round air jet striking on isothermal circular cylinder is experimentally investigated. The circumferential heat transfer distribution as well as axial Nusselt number is measured. The considered parameters are jet Reynolds number in range of 3800–40,000, and jet inclination angle, ranging from 90 to 20. The experiments are carried out for nozzle sizes, d=3, 5 and 7 mm, and separation distance from 7 to 30 of the nozzle diameter. The output results indicated that the point of maximum heat transfer along the x-axis is shifted upstream and the local heat transfer distribution changed as a function of jet inclination. The magnitude of the shift was found to be significantly higher than that observe for a flat plate. The increasing inclination caused increasing asymmetry around the point of maximum heat transfer, with the upstream side of heat transfer profile dropping off more rapidly than the downstream side. Correlations of both the magnitude and shift of maximum heat transfer point are presented. The surface average heat transfer rate is calculated and compared with the normal impingement. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

5.
Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet.  相似文献   

6.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

7.
Heat transfer from an obliquely impinging circular, air jet to a flat plate   总被引:5,自引:0,他引:5  
A series of experiments was conducted for the measurement of local convective heat transfer coefficients for an obliquely impinging circular air jet to a flat plate. In the experiments, the oblique angles selected were 90°, 75°, 60° and 45°, with 90° being a vertical jet. Two different Reynolds numbers of 10,000 and 23,000 were considered for the purpose of comparison with previous data available in the literature. Another parameter varied in the measurements was the dimensionless jet-to-plate distance, L/D. Four values of L/D(2, 4, 7, and 10) were considered in the experiments. The experiments were conducted using the preheated wall transient liquid-crystal technique. Liquid-crystal color changes were recorded with a video system. Local convective heat transfer coefficients were obtained through the surface transient temperatures that were related to the recorded color information. Detailed local heat transfer coefficients were presented and discussed in relation to the asymmetric wall jet upon impingement of the jet flow. Results of experiments show that, for a given flow situation, the point of maximum heat transfer shifts away from the geometrical impingement point toward the compression side of the wall jet on the axis of symmetry. The shift is more pronounced with a smaller oblique angle (larger jet inclination) and a smaller jet-to-plate distance. Comparisons of experimental results with existing heat transfer data for both obliquely impinging jets and vertical impinging jets are made. The effect of oblique angles on heat transfer was assessed.  相似文献   

8.
不完全膨胀超声速射流的势核中会产生准周期的激波栅格结构, 其与剪切层内拟序结构的相互作用会产生激波噪声. 啸声是主要向上游方向传播的、具有离散频率的高强度激波噪声, 其产生是受一种非线性的声反馈环机制驱动. 精确定位啸声的声源位置是定量理解啸声反馈环机制和发展准确的啸声预测模型的一个关键所在. 为了分析近场啸声, 本文采用高精度数值方法直接求解轴对称可压缩Navier-Stokes方程, 数值模拟了完全膨胀射流马赫数为1.10和1.15的圆形声速喷管欠膨胀超声速冷射流, 得到了A1和A2两种轴对称模态啸声. 通过傅里叶模态分解、本征模态分解和动态模态分解, 分析了射流时序压力场和速度场, 研究了啸声关联拟序流动结构的空间演化, 精确定位了轴对称模态啸声的声源位置. 研究表明: 啸声关联拟序流动结构存在饱和态区域, 啸声声波是在其饱和态区域产生并向外传播; 在本文所涉及的射流马赫数范围内, A1和A2两种轴对称模态啸声的有效声源位置分别是在第4和第3个激波栅格结构的尾缘.   相似文献   

9.
This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward to obtain jet impingement flowfield solutions, and jet impingement for specular reflective plate surface properties. Several direct simulation Monte Carlo simulation results are provided and they validate these analytical solutions of rarefied planar jet flows. The results can find applications in many disciplines, such as materials processing, molecular beams, and space engineering.  相似文献   

10.
This paper presents the characteristics of flow behavior and thermal fields of both free and impingement jets issued from circular orifice nozzle at Re = 9,700. The flow behavior of a single round jet and impingement jet were observed by smoke flow visualization recorded by a high speed video camera with 5,000 frames per second. Heat transfer coefficient on the impingement surface was calculated varying the Reynolds number and the separation distance between nozzle exit and plate. Time-series analysis was applied to the visualization image to get the information of time variation of flow behavior. Probability distribution of vortex scale induced by the jet at discrete positions was investigated. Experimental results show that the potential core is not a continuous phenomenon with time and the frequency of vortex ring formation have similar features regardless of whether the impingement plate was set on or not, furthermore the time-series analysis with flow visualization images makes clear the detailed flow behavior.  相似文献   

11.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

12.
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.  相似文献   

13.
This study describes a technique that combines the benefits of focusing schlieren and phase conditioning. Focusing schlieren blurs and drops contrast of non-critical features whereas phase conditioning emphasizes periodic flow features, and their combination produces unique results. The supersonic jets that we studied produced an intense tone referred to as screech. The measured screech tone signal was used as input to the phase conditioning circuit that adjusted the strobing light source to the vertical synchronization pulse of a CCD camera. The sharp video images obtained by this technique could either be frozen or continuously swept through one period of screech to acquire a slow motion video record of the jet unsteadiness. Two cases were visualized in this study: first, an underexpanded jet from a convergent rectangular nozzle at various fully expanded Mach numbers. Second, a supersonic jet emerging from a convergent-divergent rectangular nozzle at a design Mach number of 1.4, artificially excited by impingement tones. The results of this study illustrate the usefulness of this system in visualizing oscillatory flows.The authors would like to thank Dr. Edward J. Rice for his contributions including the design of the impingement obstacles. The efforts of Brentley C. Nowlin (NASA Lewis), and James E. Little (NYMA Inc.) in the design and construction of the strobe trigger mechanism are highly appreciated. We also thank Janet Ivancic (NASA Lewis Photo Lab) for the image enhancement.  相似文献   

14.
 A series of experiments were carried out to determine the heat transfer characteristics of a round, premixed butane/air flame jet impinging upwards on an inclined flat plate, at different angles of incidence. The flame was fixed with an equivalence ratio of 1.0, a Reynolds number of 2500 and a plate-to-nozzle distance of 5d, while the inclination angles chosen for investigation were 57°, 67°, 80° and 90°. It was found that the location of the maximum heat flux point would be shifted away from the geometrical impingement point by reducing the angle of incidence. Decreasing the angle of incidence also enhanced the maximum local heat flux, while reduced the average heat transfer. The present study presented the effect of angle of incidence on the heat transfer characteristics of an impinging butane/air flame jet, which had been rarely reported in previous similar studies. Received on 11 October 2000 The authors wish to thank The Hong Kong Polytechnic University for the financial support of the present study.  相似文献   

15.
The flow field associated with a jet impinging onto a surface at an inclined angle is investigated using pressure-sensitive paint (PSP) and particle image velocimetry. The PSP yields continuous measurements of pressure on the jet impingement surface. The jet footprint on the impingement surface is visualized using the half-maximum pressure contour. The results indicate that the impingement angle of the jet is the dominant parameter in determining the footprint of the jet on the impingement surface. This contour is similar in shape to an ellipse that is created by projecting the nozzle through the impingement surface. The ellipse is centered at the location of maximum pressure and the width of the minor axis is just over one jet diameter. The location of maximum pressure is found upstream of the geometric impingement point and this location is a strong function of the impingement angle. A curve fit for the location of maximum pressure can be constructed using an exact solution of the Navier–Stokes equations for a non-orthogonal stagnation flow. The maximum value of pressure is a function of impingement angle and varies as the sine of the impingement angle squared; the maximum pressure is also a function of jet impingement distance. Using these results, a simple procedure for predicting the overall structure of the jet on the impingement surface is presented.  相似文献   

16.
The possibility of enhancing or attenuating the mixing in a turbulent jet excited by a two-frequency acoustic signal consisting of fundamental and subharmonic tones is investigated experimentally. It is shown that two-frequency acoustic excitation of the jet is effective only at low frequencies, whereas at high frequencies the effect of two-frequency and single-frequency forcing is almost the same.  相似文献   

17.
This article experimentally investigates the self-excited impinging planar jet flow, specifically the development and propagation of large-scale coherent flow structures convecting between the nozzle lip and the downstream impingement surface. The investigation uses phase-locked particle image velocimetry measurements and a new structure-tracking scheme to measure convection velocity and characterize the impingement mechanism near the plate, in order to develop a new feedback model that can be used to predict the oscillation frequency as a function of flow velocity ( $U_o$ ), impingement distance ( $x_o$ ) and nozzle thickness ( $h$ ). The resulting model prediction shows a good agreement with experimental tone frequency data.  相似文献   

18.
The secondary vortex structure of an impingement jet system is enhanced by V-ribs on both the impingement and target plates. Numerical and experimental investigations are conducted to study the flow field and heat transfer resulting from V-rib turbulators in an impingement cooling configuration. Three different cases are tested: V-ribs on both the impingement and target plates (V-rib), V-ribs only on the impingement plate (V-rib-impingement) and V-ribs only on the target plate (V-rib-target). The experiment is carried out on a 9 by 9 inline impingement array test facility. For the transient measurements, narrow band thermochromic liquid crystals (TLC) and thermocouples are applied to obtain the local heat transfer distribution. Pressure taps are used to measure the pressure loss. The numerical simulation is carried out with ANSYS CFX 14, using a steady state Reynolds-Averaged Navier-Stokes (RANS) approach and the Shear Stress Transport (SST) turbulence model. All studies are done for a Reynolds number range of 15,000 to 35,000. There is a good overall agreement between the experimental and numerical results for the cases studied. The detailed flow field from the numerical simulation is used to understand and complement the phenomena observed in the experiment. The evaluation of the flow field confirms that the V-ribs enhance the secondary flow structure in the impingement system and induce a positive heat flux ratio compared to the baseline case. Both experimental and numerical results show a Nusselt number increase for the V-rib-impingement and V-rib configuration, with a highest Nusselt number ratio of 1.16. Notice that the experiment cannot take the rib part into account due to the invalid 1D semi-infinite wall assumption there, while the CFD simulation allows for the consideration of heat transfer on the rib surface and thus complements the heat flux data on the target plate. Depending on the configuration, the CFD simulation shows a heat flux ratio of 1.06–1.34. The pressure loss of the system is comparable to the case with a smooth impingement plate and a smooth target plate.  相似文献   

19.
 The multiple acoustic modes and shear layer instability waves which characterize a supersonic underexpanded rectangular jet are investigated experimentally via the Morlet wavelet transform. Because of its quasi-locality in both physical-space and Fourier space, the wavelet transformation allows one to track the time evolution of the various scales in both acoustic and velocity fluctuation signals. Using this technique it is demonstrated that multiple acoustic modes produced by the jet coexist and are not due to a mode switching mechanism. Unsteady screech tone modulation is observed and a mechanism for its occurrence is proposed. Received: 9 February 1996 / Accepted: 17 June 1996  相似文献   

20.
本文介绍火箭燃气射流冲击场的实验研究方法和结果,采用大口径长程莫阿偏折仪获得了自由射流和射流冲击场的莫阿偏折图,定量得到马赫盘位置、边界、斜激波等近场结构值,并与风洞冷射流模拟和数值模拟结果进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号