首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the first example of scandium dimetallofullerenes, Sc(2)@C(3v)(8)-C(82), which has the same cage as the previously assigned scandium carbide cluster fullerene Sc(2)C(2)@C(3v)(8)-C(82) but they exhibit distinctly different electronic configurations and electronic behaviours, confirming the drastic influence of the internal C(2) unit.  相似文献   

2.
The carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3) contains a series of monometallic endohedral fullerenes, Sm@C(2n), along with smaller quantities of the dimetallic endohedrals Sm(2)@C(2n) with n = 44, 45, 46, and the previously described Sm(2)@D(3d)(822)-C(104). The compounds Sm(2)@C(2n) with n = 44, 45, 46 were purified by high pressure liquid chromatography on several different columns. For endohedral fullerenes that contain two metal atoms, there are two structural possibilities: a normal dimetallofullerene, M(2)@C(2n), or a metal carbide, M(2)(μ-C(2))@C(2n-2). For structural analysis, the individual Sm(2)@C(2n) endohedral fullerenes were cocrystallized with Ni(octaethylporphyrin), and the products were examined by single-crystal X-ray diffraction. These data identified the three new endohedrals as normal dimetallofullerenes and not as carbides: Sm(2)@D(2)(35)-C(88), Sm(2)@C(1)(21)-C(90), and Sm(2)@D(3)(85)-C(92). All four of the known Sm(2)@C(2n) endohedral fullerenes have cages that obey the isolated pentagon rule (IPR). As the cage size expands in this series, so do the distances between the variously disordered samarium atoms. Since the UV/vis/NIR spectra of Sm(2)@D(2)(35)-C(88) and Sm(2)@C(1)(21)-C(90) are very similar to those of Gd(2)C(90) and Gd(2)C(92), we conclude that Gd(2)C(90) and Gd(2)C(92) are the carbides Gd(2)(μ-C(2))@D(2)(35)-C(88) and Gd(2)(μ-C(2))@C(1)(21)-C(90), respectively.  相似文献   

3.
X-ray analyses of the cocrystals of a series of carbide cluster metallofullerenes Sc(2)C(2)@C(2n) (n = 40-42) with cobalt(II) octaethylporphyrin present new insights into the molecular structures and cluster-cage interactions of these less-explored species. Along with the unambiguous identification of the cage structures for the three isomers of Sc(2)C(2)@C(2v)(5)-C(80), Sc(2)C(2)@C(3v)(8)-C(82), and Sc(2)C(2)@D(2d)(23)-C(84), a clear correlation between the cluster strain and cage size is observed in this series: Sc-Sc distances and dihedral angles of the bent cluster increase along with cage expansion, indicating that the bending strain within the cluster makes it pursue a planar structure to the greatest degree possible. However, the C-C distances within Sc(2)C(2) remain unchanged when the cage expands, perhaps because of the unusual bent structure of the cluster, preventing contact between the cage and the C(2) unit. Moreover, analyses revealed that larger cages provide more space for the cluster to rotate. The preferential formation of cluster endohedral metallofullerenes for scandium might be associated with its small ionic radius and the strong coordination ability as well.  相似文献   

4.
A Sc(2)C(84) isomer, previously assumed to be Sc(2)@C(84), is unambiguously identified as a new carbide cluster metallofullerene Sc(2)C(2)@C(s)(6)-C(82) using both NMR spectroscopy and X-ray crystallography. The (13)C-nuclei signal of the internal C(2)-unit was observed at 244.4 ppm with a 15% (13)C-enriched sample. Temperature-dependent dynamic motion of the internal Sc(2)C(2) cluster is also revealed with NMR spectrometry. Moreover, the chemical property of Sc(2)C(2)@C(s)(6)-C(82) is investigated for the first time using 3-triphenylmethyl-5-oxazolidinone (1) which provides a 1,3-dipolar reagent under heating. Regarding the low cage symmetry of this endohedral which contains 44 types of nonequivalent cage carbons, it is surprising to find that only one monoadduct isomer is formed in the reaction. Single-crystal X-ray results of the isolated pyrrolidino derivative Sc(2)C(2)@C(s)(6)-C(82)N(CH(2))(2)Trt (2) reveal that the addition takes place at a [6,6]-bond junction, which is far from either of the two Sc atoms. Such a highly regioselective addition pattern can be reasonably interpreted by analyzing the frontier molecular orbitals of the endohedral. Electronic and electrochemical investigations reveal that adduct 2 has a larger highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap than pristine Sc(2)C(2)@C(s)(6)-C(82); accordingly, it is more stable.  相似文献   

5.
Single-crystal X-ray diffraction studies of Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82)·Ni(II)(OEP)·2C(6)H(6) reveal that both contain fully ordered fullerene cages. The crystallographic data for Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) show two remarkable features: the presence of two slightly different cage sites and a fully ordered molecule Sc(2)(μ(2)-S)@C(s)(6)-C(82) in one of these sites. The Sc-S-Sc angles in Sc(2)(μ(2)-S)@C(s)(6)-C(82) (113.84(3)°) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82) differ (97.34(13)°). This is the first case where the nature and structure of the fullerene cage isomer exerts a demonstrable effect on the geometry of the cluster contained within. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule for C(82), the cage stability changes markedly between 0 and 250 K, but the C(s)(6)-C(82) cage is preferred at temperatures ≥250 °C when using the energies obtained with the free encapsulated model (FEM). However, the C(3v)(8)-C(82) cage is preferred at temperatures ≥250 °C using the energies obtained by rigid rotor-harmonic oscillator (RRHO) approximation. These results corroborate the fact that both cages are observed and likely to trap the Sc(2)(μ(2)-S) cluster, whereas earlier FEM and RRHO calculations predicted only the C(s)(6)-C(82) cage is likely to trap the Sc(2)(μ(2)-O) cluster. We also compare the recently published electrochemistry of the sulfide-containing Sc(2)(μ(2)-S)@C(s)(6)-C(82) to that of corresponding oxide-containing Sc(2)(μ(2)-O)@C(s)(6)-C(82).  相似文献   

6.
Unambiguous X-ray crystallographic results of the carbene adduct of Sc(2)C(82) reveal a new carbide cluster metallofullerene with the unexpected C(2v)(5)-C(80) cage, that is, Sc(2)C(2)@C(2v)(5)-C(80). More interestingly, DFT calculations and NMR results disclose that the dynamic motion of the internal Sc(2)C(2) cluster depends strongly on temperature. At 293 K, the cluster is fixed inside the cage with two nonequivalent Sc atoms on the mirror plane, thereby leading to C(s) symmetry of the whole molecule. However, when the temperature increases to 413 K, the (13)C and (45)Sc NMR spectra show that the cluster rotates rapidly inside the C(2v)(5)-C(80) cage, featuring two equivalent Sc atoms and weaker metal-cage interactions.  相似文献   

7.
In this paper, we report the synthesis, purification, (13)C NMR, and other characterization studies of Y(3)N@C(88). The (13)C NMR, UV-vis, and chromatographic data suggest an Y(3)N@C(88) having an IPR-allowed cage with D(2)(35)-C(88) symmetry. In earlier density functional theory (DFT) computational and X-ray crystallographic studies, it was reported that lanthanide (A(3)N)(6+) clusters are stabilized in D(2)(35)-C(88) symmetry cages and have reduced HOMO-LUMO gaps relative to other trimetallic nitride endohedral metallofullerene cage systems, for example, A(3)N@C(80). In this paper, we report that the nonlanthanide (Y(3)N)(6+) cluster in the D(2)(35)-C(88) cage exhibits a HOMO-LUMO gap consistent with other lanthanide A(3)N@C(88) molecules based on electrochemical measurements and DFT computational studies. These results suggest that the reduced HOMO-LUMO gap of A(3)N@C(88) systems is a property dominated by the D(2)(35)-C(88) carbon cage and not f-orbital lanthanide electronic metal cluster (A(3)N)(6+) orbital participation.  相似文献   

8.
(C(5)Me(5))(2)Y(eta(3)-C(3)H(5)) reacts with 9-borabicyclo[3.3.1]nonane, 9-BBN, to form single crystals containing both a borane-substituted allyl complex, (C(5)Me(5))(2)Y[eta(3)-C(3)H(4)(BC(8)H(14))], and a borohydride, (C(5)Me(5))(2)Y(micro-H)(2)BC(8)H(14), that can be synthesized directly from 9-BBN and the yttrium hydride, [(C(5)Me(5))(2)YH](x).  相似文献   

9.
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.  相似文献   

10.
The dynamics of the trimetallic nitride (M(3)N)(6+) (M = Sc, Y and Lu) clusters in the I(h)-(C(80))(6-) cage have been studied by (14)N and (45)Sc nuclear magnetic resonance. These NMR studies suggest that the motional barrier of (M(3)N)(6+) is related to the cluster size and increases in the series (Sc, Y, and Lu).  相似文献   

11.
Reaction of a mixture of insoluble higher fullerenes with CF3I at 500 degrees C produced a single abundant isomer of C74(CF3)12, C76(CF3)12, and C80(CF3)12, two abundant isomers of C78(CF3)12 and C82(CF3)12, and an indeterminant number of isomers of C84(CF3)12. Using a combination of 19F NMR spectroscopy, DFT calculations, and the structures and spectra of previously reported fullerene(CF3)n compounds, the most-probable structures of six of the seven isolated compounds were determined to be specific isomers of C2-(C74-D3h)(CF3)12, Cs-(C76-Td(2))(CF3)12), C2-(C78-D3h(5))(CF3)12), Cs-(C80-C2v(5))(CF3)12), C2-(C82-C2(5))(CF3)12), and C2-(C82-C2(3))(CF3)12) containing ribbons and/or loops of edge-sharing para-C6(CF3)2 hexagons. The seventh isolated compound is a C1 isomer of C78(CF3)12 containing two such ribbons. This set of compounds represents only the second reported isolable compound with the hollow C74-D3h cage and the first experimental evidence for the existence of the hollow fullerenes C76-Td(2), C78-D3h(5), C80-C2v(5), and C82-C2(5) in arc-discharge soots.  相似文献   

12.
Adams RD  Captain B  Fu W  Smith MD 《Inorganic chemistry》2002,41(21):5593-5601
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)SnH in the presence of UV irradiation has yielded the Ph(3)SnH adduct Ru(5)(CO)(15)(SnPh(3))(mu(5)-C)(mu-H), 3, by SnH bond activation and cleavage of one Ru-Ru bond in the cluster of 1. The reaction of 1 with Ph(3)SnH at 127 degrees C yielded the high nuclearity cluster compound Ru(5)(CO)(10)(SnPh(3))(mu-SnPh(2))(4)(&mu(5)-C)(mu-H), 4, that contains five tin ligands. Four of these are SnPh(2) groups that bridge each edge of the base of the Ru(5) square pyramidal cluster. The reaction of Ph(3)SnH with the benzene-substituted cluster Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 2, at 68 degrees C yielded two products: Ru(5)(CO)(11)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 5, and Ru(5)(CO)(10)(SnPh(3))(2)(C(6)H(6))(mu(5)-C)(mu-H)(2), 6. Both contain square pyramidal Ru(5) clusters with one and two SnPh(3) groups, respectively. At 127 degrees C, the reaction of 2 with an excess of Ph(3)SnH has led to the formation of two new high-nuclearity cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 7, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu-H), 8. Both compounds contain square pyramidal Ru(5) clusters with SnPh(2) groups bridging each edge of the square base. Compound 8 contains a SnPh(3) group analogous to that of compound 4. When treated with CO, compound 8 is converted to 4. When heated to 68 degrees C, compound 5 was converted to the new compound Ru(5)(CO)(11)(C(6)H(6))(mu(4)-SnPh)(mu(3)-CPh), 9, by loss of benzene and the shift of a phenyl group from the tin ligand to the carbido carbon atom to form a triply bridging benzylidyne ligand and a novel quadruply bridging stannylyne ligand.  相似文献   

13.
We analyze the electronic structure of carbide endohedral metallofullerenes of the type Sc(2)C(2)@C(82) and study the possibility of rotation of the encapsulated Sc(2)C(2) moiety in the interior of the cage. Moreover, we rationalize the higher abundance of M(2)C(2)@C(82) (M = Sc, Y) in which the metal-carbide cluster is encapsulated in the C(3v)-C(82):8 carbon cage with respect to other carbides of the same family on the basis of the formal transfer of four electrons from the cluster to the cage and sizeable (LUMO-3)-(LUMO-2) gap in the empty cages. This rule also applies to all those endohedral metallofullerenes in which the encapsulated cluster transfers four electrons to the carbon cage as, for example, the reduced [M@C(82)](-) systems (M = group 3 or lanthanide metal ion).  相似文献   

14.
Treatment of Au(SC(4)H(8))Cl with a stoichiometric amount of hydroxyaliphatic alkyne in the presence of NEt(3) results in high-yield self-assembly of homoleptic clusters (AuC(2)R)(10) (R = 9-fluorenol (1), diphenylmethanol (2), 2,6-dimethyl-4-heptanol (3), 3-methyl-2-butanol (4), 4-methyl-2-pentanol (4), 1-cyclohexanol (6), 2-borneol (7)). The molecular compounds contain an unprecedented catenane metal core with two interlocked 5-membered rings. Reactions of the decanuclear clusters 1-7 with gold-diphosphine complex [Au(2)(1,4-PPh(2)-C(6)H(4)-PPh(2))(2)](2+) lead to octanuclear cationic derivatives [Au(8)(C(2)R)(6)(PPh(2)-C(6)H(4)-PPh(2))(2)](2+) (8-14), which consist of planar tetranuclear units {Au(4)(C(2)R)(4)} coupled with two fragments [AuPPh(2)-C(6)H(4)-PPh(2)(AuC(2)R)](+). The titled complexes were characterized by NMR and ESI-MS spectroscopy, and the structures of 1, 13, and 14 were determined by single-crystal X-ray diffraction analysis. The luminescence behavior of both Au(I)(10) and Au(I)(8) families has been studied, revealing efficient room-temperature phosphorescence in solution and in the solid state, with the maximum quantum yield approaching 100% (2 in solution). DFT computational studies showed that in both Au(I)(10) and Au(I)(8) clusters metal-centered Au → Au charge transfer transitions mixed with some π-alkynyl MLCT character play a dominant role in the observed phosphorescence.  相似文献   

15.
Three isomers of Sm@C(82) that are soluble in organic solvents were obtained from the carbon soot produced by vaporization of hollow carbon rods doped with Sm(2)O(3)/graphite powder in an electric arc. These isomers were numbered as Sm@C(82)(I), Sm@C(82)(II), and Sm@C(82)(III) in order of their elution times from HPLC chromatography on a Buckyprep column with toluene as the eluent. The identities of isomers, Sm@C(82)(I) as Sm@C(s)(6)-C(82), Sm@C(82)(II) as Sm@C(3v)(7)-C(82), and Sm@C(82)(III) as Sm@C(2)(5)-C(82), were determined by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin). For endohedral fullerenes like La@C(82), which have three electrons transferred to the cage to produce the M(3+)@(C(82))(3-) electronic distribution, generally only two soluble isomers (e.g., La@C(2v)(9)-C(82) (major) and La@C(s)(6)-C(82) (minor)) are observed. In contrast, with samarium, which generates the M(2+)@(C(82))(2-) electronic distribution, five soluble isomers of Sm@C(82) have been detected, three in this study, the other two in two related prior studies. The structures of the four Sm@C(82) isomers that are currently established are Sm@C(2)(5)-C(82), Sm@C(s)(6)-C(82), Sm@C(3v)(7)-C(82), and Sm@C(2v)(9)-C(82). All of these isomers obey the isolated pentagon rule (IPR) and are sequentially interconvertable through Stone-Wales transformations.  相似文献   

16.
A new class of transition metal cluster is described, [Rh(6)(PR(3))(6)H(12)][BAr(F)(4)](2) (R = (i)Pr (1a), Cy (2a); BAr(F)(4) = [B{C(6)H(3)(CF(3))(2)}(4)](-)). These clusters are unique in that they have structures exactly like those of early transition metal clusters with edge-bridging pi-donor ligands rather than the structures expected for late transition metal clusters with pi-acceptor ligands. The solid-state structures of 1a and 2a have been determined, and the 12 hydride ligands bridge each Rh-Rh edge of a regular octahedron. Pulsed gradient spin-echo NMR experiments show that the clusters remain intact in solution, having calculated hydrodynamic radii of 9.5(3) A for 1a and 10.7(2) A for 2a, and the formulation of 1a and 2a was unambiguously confirmed by ESI mass spectrometry. Both 1a and 2a take up two molecules of H(2) to afford the cluster species [Rh(6)(P(i)Pr(3))(6)H(16)][BAr(F)(4)](2) (1b) and [Rh(6)(PCy(3))(6)H(16)][BAr(F)(4)](2) (2b), respectively, as characterized by NMR spectroscopy, ESI-MS, and, for 2b, X-ray crystallography using the [1-H-CB(11)Me(11)](-) salt. The hydride ligands were not located by X-ray crystallography, but (1)H NMR spectroscopy showed a 15:1 ratio of hydride ligands, suggesting an interstitial hydride ligand. Addition of H(2) is reversible: placing 1b and 2b under vacuum regenerates 1a and 2a. DFT calculations on [Rh(6)(PH(3))(6)H(x)()](2+) (x = 12, 16) support the structural assignments and also show a molecular orbital structure that has 20 orbitals involved with cluster bonding. Cluster formation has been monitored by (31)P{(1)H} and (1)H NMR spectroscopy, and mechanisms involving heterolytic H(2) cleavage and elimination of [HP(i)Pr(3)](+) or the formation of trimetallic intermediates are discussed.  相似文献   

17.
1,2,4-triazole was alkylated (alkyl = methyl, butyl, heptyl, decyl) at N-1 in >90% isolated yields. The resulting 1-alkyl triazoles were quaternized at N-4 in >98% isolated yields using fluorinated alkyl halides with >98% isolated yields, under neat reaction conditions at 100-120 degrees C to form N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-triazolium (Taz) iodide (m = 1, 6), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz iodide (m = 1, 4), and N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz bromide (n = 4, 7, 10). Single-crystal X-ray analyses confirmed the structure of [1-CH(3)-4-CH(2)CH(2)CF(3)-Taz](+)I(-). It crystallized in the orthorhombic space group Pccn, and the unit cell dimensions were a = 13.8289(9) A, b = 17.3603(11) A, c = 9.0587(6) A (alpha = beta = gamma = 90 degrees ). Metathesis of these polyfluoroalkyl-substituted triazolium halides with other salts led to the formation of quaternary compounds, some of which comprise ionic liquids, namely, [R(R(f))-Taz](+)Y(-) (Y = NTf(2), BF(4), PF(6), and OTf), in good isolated yields without the need for further purification: N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)( +) (1)-Taz Y (m = 1, 6; Y = NTf(2)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1- C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz Y (n = 1, 4; Y = NTf(2)), N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz Y (n = 7, 10; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)F-TazY (Y = OTf), N1-C(7)H(15)-N4-(CH(2))(2)F-TazY (Y = BF(4)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m) (+ 1)-Taz Y (m = 4, 6; Y = PF(6)), N1-C(7)H(15)-N4-(CH(2))(2)C(4)F(9)-Taz Y (Y = PF(6)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 4, 6; Y = OTf). All new compounds were characterized by (1)H, (19)F, and (13)C NMR and MS spectra and elemental analyses. T(g)s and T(m)s of ionic liquids were determined by DSC.  相似文献   

18.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

19.
The reactions of [NEt(4)](2)[Ni(6)(CO)(12)] with miscellaneous carbon halides (e.g. CCl(4), C(4)Cl(6)) in CH(2)Cl(2) have been extensively investigated particularly focusing on the stoichiometric ratio of the reagents and reaction temperature. This allowed the preparation of the previously known acetylide clusters [Ni(16)(C(2))(2)(CO)(23)](4-), [HNi(25)(C(2))(4)(CO)(32)](3-) and [Ni(22)(C(2))(4)(CO)(28)Cl](3-), as well as isolation and full characterisation of the closely related [Ni(17)(C(2))(2)(CO)(24)](4-) and [Ni(25)(C(2))(4)(CO)(32)](4-) tetraanions. From a structural point of view, all these clusters are based on a Ni(16) square orthobicupola which contain interstitial C(2), Ni(η(2)-C(2))(4) or Ni(2)(μ-η(2)-C(2))(4) moieties, displaying rather short C-C bonds. Electrochemical studies reveal that all these species undergo different redox processes, even if their stability is rather limited. This is corroborated by an extensive analysis of the interaction between interstitial C(2) acetylide units and the metal cluster cage by Extended Huckel Molecular Orbital (EHMO) calculations, which indicates that tightly bonded C-C units are less effective than isolated C-atoms in stabilising the cluster cage.  相似文献   

20.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号