首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-(Ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride (EtNBS) is a photosensitizer (PS) with broad antimicrobial photodynamic activity. The objective of this study was to determine the antimicrobial photodynamic effect of side chain/end group modifications of EtNBS on two representative bacterial Gram-type-specific strains. Two EtNBS derivatives were synthesized, each functionalized with a different side-chain end-group, alcohol or carboxylic acid. In solution, both exhibited photochemical properties consistent with those of the EtNBS parent molecule. In vitro photodynamic therapy experiments revealed an initial Gram-type-specificity with two representative strains; both derivatives were phototoxic to Staphylococcus aureus 29,213 but the carboxylic acid derivative was nontoxic to Escherichia coli 25,922. This difference in photodynamic efficacy was not due to a difference in the binding of the two molecules to the bacteria as the amount of both derivatives bound by bacteria was identical. Interestingly, the carboxylic acid derivative produced no fluorescence emission when observed in cultures of E. coli via fluorescence microscopy. These early findings suggest that the addition of small functional groups could achieve Gram-type-specific phototoxicity through altering the photodynamic activity of PSs and deserve further exploration in a larger number of representative strains of each Gram type.  相似文献   

2.
Photodynamic therapy (PDT) provides an effective option for treatment of tumors and other diseases in superficial tissues and attracts attention for in vitro study with cells. In this study, we present a significantly improved model of in vitro cell killing through Type-II PDT for simulation of the molecular interactions and cell killing in time domain in the presence of oxygen transport within a spherical cell. The self-consistency of the approach is examined by determination of conditions for obtaining positive definitive solutions of molecular concentrations. Decay constants of photosensitizers and unoxidized receptors are extracted as the key indices of molecular kinetics with different oxygen diffusion constants and permeability at the cell membrane. By coupling the molecular kinetics to cell killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain the cell survival ratio as a function of light fluence or initial photosensitizer concentration with different photon density or irradiance of incident light and other parameters of oxygen transport. The results show that the present model of Type-II PDT yields a powerful tool to quantitate various events underlying PDT at the molecular and cellular levels and to interpret experimental results of in vitro cell studies.  相似文献   

3.
Tumor hypoxia, either preexisting or as a result of oxygen depletion during photodynamic therapy (PDT) light irradiation, can significantly reduce the effectiveness of PDT-induced cell killing. To overcome tumor hypoxia and improve tumor cell killing, we propose using supplemental hyperoxygenation during Photofrin-PDT. The mechanism for the tumor cure enhancement of the hyperoxygenation-PDT combination is investigated using an in vivo-in vitro technique. A hypoxic tumor model was established by implanting mammary adenocarcinoma in the hind legs of mice. Light irradiation (200 J/cm2 at either 75 or 150 mW/cm2), under various oxygen supplemental conditions (room air, carbogen, 100% normobaric or hyperbaric oxygen), was delivered to animals that received 12.5 mg/kg Photofrin 24 h before light irradiation. Tumors were harvested at various time points after PDT and grown in vitro for colony formation analysis. Treated tumors were also analyzed histologically. The results show that when PDT is combined with hyperoxygenation, the hypoxic condition could be improved and the cell killing rate at various time points after PDT could be significantly enhanced over that without hyperoxygenation, suggesting an enhanced direct and indirect cell killing associated with high-concentration oxygen breathing. This study further confirms our earlier observation that when a PDT treatment is combined with hyperoxygenation it can be more effective in controlling hypoxic tumors.  相似文献   

4.
A series of polyethylene glycol-functionalized benzylidene cyclopentanone dyes with varying lipid/water partition coefficients were synthesized in high yields by a simple process. Detailed characterization and systematic studies of these molecules, including linear and nonlinear photophysical properties, reactive oxygen yields, and in vitro photodynamic therapy (PDT) activities, were conducted. Four of these dyes exhibited good solubility in PBS (>2 mg ml(-1), which is sufficient for clinical venous injection), high reactive oxygen yields, large two-photon absorption and low dark toxicity, under the therapy dosage. Among them, two dyes could be absorbed efficiently by human rectal cancer 1116 cells, and presented strong two-photon excited PDT activity in in vitro cell experiments.  相似文献   

5.
Antimicrobial photodynamic therapy(a PDT) has been considered a noninvasive and effective modality against the bacterial infection of peri–implantitis, especially the a PDT triggered by near-infrared(NIR)light due to the large penetration depth in tissue. However, the complexity of hypoxia microenvironments and the distance of a PDT sterilization still pose challenges before realizing the a PDT clinical application. Due to the long lifespan and transmission distance of therapeutic gas molecules,...  相似文献   

6.
Cutaneous and mucocutaneous Candida infections are considered to be important targets for antimicrobial photodynamic therapy (PDT). Clinical application of antimicrobial PDT will require strategies that enhance microbial killing while minimizing damage to host tissue. Increasing the sensitivity of infectious agents to PDT will help achieve this goal. Our previous studies demonstrated that raising the level of oxidative stress in Candida by interfering with fungal respiration increased the efficiency of PDT. Therefore, we sought to identify compounds in clinical use that would augment the oxidative stress caused by PDT by contributing to reactive oxygen species (ROS) formation themselves. Based on the ability of the antifungal miconazole to induce ROS in Candida, we tested several azole antifungals for their ability to augment PDT in vitro. Although miconazole and ketoconazole both stimulated ROS production in Candida albicans, only miconazole enhanced the killing of C. albicans and induced prolonged fungistasis in organisms that survived PDT using the porphyrin TMP-1363 and the phenothiazine methylene blue as photosensitizers. The data suggest that miconazole could be used to increase the efficacy of PDT against C. albicans, and its mechanism of action is likely to be multifactorial.  相似文献   

7.
[reaction: see text] A series of water-soluble green perylenediimide (PDI) dyes have been synthesized. On red light excitation, these dyes were shown to be efficient generators of singlet oxygen, and in cell culture media, they were shown to display significant light-induced cytotoxic effects on the human erythroleukemia cell line (K-562). It appears that highly versatile PDI dyes are likely to find new applications in photodynamic therapy.  相似文献   

8.
Photodynamic therapy (PDT) with porphyrins and red light is receiving increasing attention in the management of malignant tumours. At present PDT is primarily indicated for the treatment of superficial or early-stage lesions. At the Department of Radiotherapy and the First Institute of Surgery in Padova (Italy) more than 150 cases of tumours of different types have been treated using this technique. This paper briefly describes 21 cases of superficial oesophageal cancer. A complete response was observed in 11 of 21 cases. Radiation therapy appeared to be very effective as a salvage treatment of non-response patients.  相似文献   

9.
Pseudomonas aeruginosa is considered one of the most important pathogens that represent life‐threatening risk in nosocomial environments, mainly in patients with severe burns. Antimicrobial photodynamic therapy (aPDT) has been effective to kill bacteria. The purpose of this study was to develop a burn wound and bloodstream infection model and verify aPDT effects on it. In vitro, we tested two wavelengths (blue and red LEDs) on a clinical isolate of P. aeruginosa strain with resistance to multiple antibiotics using HB:La+3 as photosensitizer. Verapamil® associated to aPDT was also studied. In vivo, P. aeruginosa‐infected burned mice were submitted to aPDT. Bacterial counting was performed on local infection and bloodstream. Survival time of animals was also monitored. In this study, aPDT was effective to reduce P. aeruginosa in vitro. In addition, Verapamil® assay showed that HB:La+3 is not recognized by ATP‐binding cassete (ABC) efflux pump mechanism. In the in vivo study, aPDT was able to reduce bacterial load in burn wounds, delay bacteremia and keep the bacterial levels in blood 2–3 logs lower compared with an untreated group. Mice survival was increased on 24 h. Thus, this result suggests that aPDT may also be a novel prophylactic treatment in the care of burned patients.  相似文献   

10.
Halogenated squaraine dyes are characterized by long wavelength absorption (>600 nm) and high triplet yields and therefore represent new types of photosensitizers that could be useful for photodynamic therapy. We have analyzed the cytotoxicity and genotoxicity of the bromo derivative 1, the iodo derivative 2 and the corresponding nonhalogenated dye 3 in the absence and presence of visible light. At concentrations of 1-2 microM, 1 and 2 reduced the cloning efficiency of AS52 Chinese hamster ovary cells to less than 1% under conditions that were well tolerated in the dark. Similarly, the proliferation of L5178Y mouse lymphoma cells was inhibited by photoexcited 1 and 2 with high selectivity. The squaraine 3 was much less efficient. Both 1 and 2 induced only few mutations in the gpt locus of the AS52 cells in the presence of light and were not mutagenic in the dark. No mutagenicity with and without irradiation was observed in Salmonella typhimurium TA100 and TA2638. However, both 1 and 2 plus light increased the frequency of micronuclei in AS52 cells. The results indicate that halogenated squaraines exhibit photobiological properties in vitro that are favorable for photodynamic therapeutical applications.  相似文献   

11.
12.
13.
BODIPYs are renowned fluorescent dyes with strong and tunable absorption in the visible region, high thermal and photo-stability and exceptional fluorescence quantum yields. Transition metal complexes are the most commonly used triplet photosensitisers, but, recently, the use of organic dyes has emerged as a viable and more sustainable alternative. By proper design, BODIPY dyes have been turned from highly fluorescent labels into efficient triplet photosensitizers with strong absorption in the visible region (from green to orange). In this perspective, we report three design strategies: (i) halogenation of the dye skeleton, (ii) donor–acceptor dyads and (iii) BODIPY dimers. We compare pros and cons of these approaches in terms of optical and electrochemical properties and synthetic viability. The potential applications of these systems span from energy conversion to medicine and key examples are presented.

BODIPYs offer a versatile platform to build organic triplet photosensitisers for PDT, TTA upconversion and photocatalysis. Tuning their properties provides the opportunity of replacing heavy-metal complexes and can lead to improved sustainability.  相似文献   

14.
15.
The subcellular localization sites of TPPS4 and TPPS1 and the subsequent cellular site damage during photodynamic therapy were investigated in CT-26 colon carcinoma cells using spectroscopic and electron microscopy techniques. The association of both porphyrins with the mitochondria was investigated and the implications of this association on cellular functions were determined. Spectrofluorescence measurements showed that TPPS4 favors an aqueous environment, while TPPS1 interacts with lipophilic complexes. The subcellular localization sites of each sensitizer were determined using spectral imaging. Mitochondrial-CFP transfected cells treated with porphyrins revealed localization of TPPS1 in the peri-nuclear region, while TPPS4 localized in the mitochondria, inducing structural damage and swelling upon irradiation, as shown by transmission electron microscopy. TPPS4 fluorescence was detected in isolated mitochondria following irradiation. The photodamage induced a 38% reduction in mitochondrial activity, a 30% decrease in cellular ATP and a reduction in Na(+)/K(+)-ATPase activity. As a result, cytosolic concentrations of Na(+) and Ca(2+) increased, and the level of K(+) decreased. In contrast, the lipophilic TPPS1 did not affect mitochondrial structure or function and ATP content remained unchanged. We conclude that TPPS4 induces mitochondrial structural and functional photodamage resulting in an altered cytoplasmic ion concentration, while TPPS1 has no effect on the mitochondria.  相似文献   

16.
Halogenated squaraine dyes 1 and 2 possess favorable photophysical and in vitro photobiological properties that make these new class of molecules interesting for photodynamic therapeutic applications. For a better understanding of the mechanism of their photobiological activity, we have analyzed the DNA damage and the cytotoxicity induced by these photosensitizers in mammalian cells and cell-free systems in the presence and absence of various additives and scavengers. Both photoactivated squaraines were found to be similar efficient in inducing single-strand breaks (SSB) in cell-free DNA when compared with the cellular DNA. Superoxide dismutase and catalase did not show any influence. However, the presence of tert-butanol and glutathione inhibited the formation of the DNA SSB, indicating an indirect (possibly squaraine radical mediated) mechanism under cell-free conditions. Replacing H2O in the buffer by D2O resulted in a five- to six-fold increase in the number of the SSB in cell-free DNA and a significant enhancement of the photocytotoxicity in mouse lymphoma cells. The results demonstrate that singlet oxygen is the major reactive species under cell-free and cellular conditions and confirm that squaraine-based sensitizers 1 and 2 can have potential applications in photodynamic therapy.  相似文献   

17.
Cell survival was investigated after exposing cells in vitro to different temperatures before or after photodynamic therapy with 5-aminolevulinic acid. The photodynamic process was found to be temperature dependent. Cells exposed for 1h to 41 degrees C before light exposure or to 7 degrees C after light exposure showed decreased survival. Furthermore, the photobleaching rate of protoporphyrin IX in the cells was found to increase with increasing temperature during the light exposure. Thus, the photodynamic effect with 5-aminolevulinic acid may be enhanced by heating the tumour area before, and by cooling it immediately after the treatment.  相似文献   

18.
Endoscopic photodynamic therapy (PDT) with haematoporphyrin derivative was used in the primary treatment of 69 patients with inoperable gastrointestinal neoplasms. Patients were divided into three groups: 31 with oesophageal squamous cell carcinoma, 17 with adenocarcinoma of the stomach or lower third of the oesophagus and 21 with rectosigmoid adenocarcinoma. After infusion of 2.5-5.0 mg haematoporphyrin derivative per kilogram of body weight, lesions were irradiated using an argon dye laser (632 nm). During a follow-up period averaging 20 months (27.9 months for 35 surviving patients), complete local tumour destruction and negative histology were observed in 32 out of 69 cases. Flow-cytometric analysis of DNA content before and after PDT suggests that a clonal selection occurs in some cases of treatment failure. The results of this open pilot study suggest the potential efficacy of PDT as a curative treatment for selected cases of inoperable gastrointestinal cancers.  相似文献   

19.
The selectivity of antimicrobial photodynamic therapy (PDT) can be enhanced by coupling the photosensitizer (PS) to a targeting ligand. Nanoplatforms provide a medium for designing delivery vehicles that incorporate both functional attributes. We report here the photodynamic inactivation of a pathogenic bacterium, Staphylococcus aureus, using targeted nanoplatforms conjugated to a photosensitizer (PS). Both electrostatic and complementary biological interactions were used to mediate targeting. Genetic constructs of a protein cage architecture allowed site-specific chemical functionalization with the PS and facilitated dual functionalization with the PS and the targeting ligand. These results demonstrate that protein cage architectures can serve as versatile templates for engineering nanoplatforms for targeted antimicrobial PDT.  相似文献   

20.
The selection of fungi resistant to currently used fungicides and the emergence of new pathogenic species make the development of alternative fungus-control techniques highly desirable. Photodynamic antimicrobial chemotherapy (PACT) is a promising method which combines a nontoxic photosensitizer (PS) with visible light to cause selective killing of microbial cells. The development of PACT to treat mycoses or kill fungi in the environment depends on identifying effective PS for the different pathogenic species and delivery systems able to expand and optimize their use. In the present study, the in vitro susceptibility of Cryptococcus neoformans melanized cells to the photodynamic effects of the PS agent ClAlPc in nanoemulsion (ClAlPc/NE) was examined. Cells were killed in a PS concentration- and light dose-dependent manner. Treatment with ClAlPc/NE, using PS concentrations (e.g. 4.5 μm) and light doses (e.g. 10 J cm(-2)) compatible with PACT, resulted in a reduction of up to 6 logs in survival. Washing the cells to remove unbound PS before light exposure did not inhibit fungal photodynamic inactivation. Internalization of ClAlPc by C. neoformans was confirmed by confocal fluorescence microscopy, and the degree of uptake was dependent on PS concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号